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DEATH OF MASSIVE STARS

• Massive stars end in core collapse supernova explosions

• Neutron stars: compact remnants

•  M ~ 1-2 Msolar ,  R ~ 10 km 
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NEUTRON STAR STRUCTURE

• Compact massive objects, M ~ 1-2 Msolar ,  R ~ 10 km 
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Dense Nuclear Matter

properties of NM at 
saturation n0:

B/A, m*/m, K, asym
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Astrophysical Observables

Period

Mass M

Radius R

Moment of inertia I~MR2

Gravitational redshift z~M/R

Cooling
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MODELING NEUTRON STARS

Astrophysics

General Relativity

Atomic Physics

Nuclear Physics

Particle Physics

Condensed Matter Physics
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Equation of state (EoS)
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Neutron stars in Relativistic binaries 

     Post-Keplerian Parameters                                                                        .                                                           • Relativistic advance of periastron ω

• Gravitational redshift and time dilation γ      
                                                .
• Orbital decay in period Pb

• Shapiro time delay (range r and shape s)

The list of author affi liations is available in the full article online.
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A Massive Pulsar in a 
Compact Relativistic Binary
John Antoniadis,* Paulo C. C. Freire, Norbert Wex, Thomas M. Tauris, Ryan S. Lynch, 
Marten H. van Kerkwijk, Michael Kramer, Cees Bassa, Vik S. Dhillon, Thomas Driebe, 
Jason W. T. Hessels, Victoria M. Kaspi, Vladislav I. Kondratiev, Norbert Langer, 
Thomas R. Marsh, Maura A. McLaughlin, Timothy T. Pennucci, Scott M. Ransom, 
Ingrid H. Stairs, Joeri van Leeuwen, Joris P. W. Verbiest, David G. Whelan

Introduction: Neutron stars with masses above 1.8 solar masses (M�), possess extreme gravitational 

fi elds, which may give rise to phenomena outside general relativity. Hitherto, these strong-fi eld devia-

tions have not been probed by experiment, because they become observable only in tight binaries 

containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves 

can be tested. Understanding the origin of such a system would also help to answer fundamental ques-

tions of close-binary evolution.

Methods: We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved 

optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to 

derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.

Results: We fi nd that the white dwarf has a mass of 0.172 ± 0.003 M�, which, combined with orbital 

velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M�. Additionally, over a span of 2 years, 

we observed a signifi cant decrease in the orbital period, P�
b

obs = –8.6 ± 1.4 µs year−1 in our radio-

timing data.

Discussion: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass 

of 2 M� and independently confi rms the existence of such massive neutron stars in nature. For these 

masses and orbital period, general relativity 

predicts a significant orbital decay, which 

matches the observed value, P�
b

obs
/
 P�

b

GR
 = 1.05 

± 0.18.

The pulsar has a gravitational binding 

energy 60% higher than other known neu-

tron stars in binaries where gravitational-

wave damping has been detected. Because 

the magnitude of strong-field deviations 

generally depends nonlinearly on the bind-

ing energy, the measurement of orbital 

decay transforms the system into a gravita-

tional laboratory for an as-yet untested grav-

ity regime. The consistency of the observed 

orbital decay with general relativity  therefore 

supports its validity, even for such extreme 

gravity-matter couplings, and rules out 

strong-fi eld phenomena predicted by physi-

cally well-motivated alternatives. Moreover, 

our result supports the use of general rela-

tivity–based templates for the detection of 

gravitational waves from merger events with 

advanced ground-based detectors.

Lastly, the system provides insight into 

pulsar-spin evolution after mass accretion. 

Because of its short merging time scale of 

400 megayears, the system is a direct chan-

nel for the formation of an ultracompact x-ray 

binary, possibly leading to a pulsar-planet 

system or the formation of a black hole.

Artist’s impression of the PSR J0348+0432 system. 
The compact pulsar (with beams of radio emission) produces 

a strong distortion of spacetime (illustrated by the green 

mesh). Conversely, spacetime around its white dwarf com-

panion (in light blue) is substantially less curved. According 

to relativistic theories of gravity, the binary system is subject 

to energy loss by gravitational waves.
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Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M!, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M!, and are therefore ruled out.

10

December 16, 2010 1:9 WSPC/INSTRUCTION FILE gebfest˙jl

4 James M Lattimer and Madappa Prakash

Fig. 1. Measured neutron star masses. References in parenthesis following source numbers are
identified in Table 1.

Mmax(theo) > Mmax(obs) 

Constraining the EoS

Lattimer and Prakash, arXiv:1012.3208
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Soft equation of state from heavy-ion data 

KaoS experiment, 
GSI Darmstadt

I. Sagert, C. Sturm, D. C., L.Tolos and J. Schaffner-Bielich, 2012, 
Phys. Rev. C 85, 065802
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Extreme Properties of Neutron Stars
• The most compact configurations occur when the
low-density equation of state is "soft" and the
high-density equation of state is "stiff".

soft

⇐
=

stiff=
⇒

εo

p
=

ε−
ε o

ca
us
al
lim
it ε0 is the only

EOS parameter

The TOV
solutions scale
with ε0

p = 0 ◦

J.M. Lattimer, WE-Heraeus School on Nuclear Astrophysics in the Cosmos, GSI, 13/07/10 – p. 34/67

Lattimer, GSI, 2010
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Neutron Star Oscillations : Asteroseismology

Non-radial Oscillations:
f-modes: fundamental
g-modes: buoyancy
p-modes: pressure
R-modes: Coriolis force
w-modes: space-time G W detectors
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Neutron Star Oscillations : Asteroseismology

R-mode

Non-radial Oscillations:
f-modes: fundamental
g-modes: buoyancy
p-modes: pressure
R-modes: Coriolis force
w-modes: space-time G W detectors
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Magnetars
Ultra strong magnetic field      B ~ 10 15  G
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Magnetars
Ultra strong magnetic field      B ~ 10 15  G
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  Composition of cold and dense matter
  tests of general relativity
  oscillation modes and gravitational waves
  physics in ultra strong magnetic fields
 ....

Neutron stars are perfect astrophysical laboratories for ..
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  tests of general relativity
  oscillation modes and gravitational waves
  physics in ultra strong magnetic fields
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Neutron stars are perfect astrophysical laboratories for ..
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