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Dark Matter/Energy or Dark Gravity?

a0∼10−10 m /s 2Evidence for Dark Sector from accelerations lower than

1=BH-BH systems with 
     aLIGO/aVirgo/KAGRA

2=NS-NS systems with 
    aLIGO/aVirgo/KAGRA, 

3=BH-BH with eLISA, 

4=BH- BH with PTAs
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Lorentz-violating gravity

Break explicitly boost invariance by choosing time direction at each 
point of spacetime (Einstein-Aether theory) or a preferred foliation 
(Horava gravity, aka khronometric theory)

● Pro's: better UV behavior (power-counting renormalizability); provides 
natural way to obtain acceleration-dependent phenomenology

● Con's: No direct coupling of vector field to matter, but percolation of 
Lorentz violations from gravity to matter

Einstein-Aether 
theory

Horava 
gravity
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Experimental and theoretical constraints

● Solar system (i.e. 1PN) constraints: can be matched as well as in GR

● AE theory has propagating spin-0, spin-1 and spin-2 gravitational 
modes; khronometric theory has spin-0, spin-2 modes

● For classical/quantum stability (i.e. no gradient instabilities and no 
ghosts), real propagation speeds and positive energies are required

● Propagation speed must be larger than speed of light to avoid 
gravitational Cherenkov radiation

● Well posedness proved in flat space and in spherical symmetry
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Stability+Solar System+Cherenkov constraints

AE theory Khronometric
theory

GR

GR
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How about cosmological constraints?

● Weak for AE theory

● For khronometric theory,

 

and BBN requires

● No constraints from CMB in 
khronometric theory yet

 

∣G N /GC−1∣< 1 /8
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Why are astrophysical effects expected?

● Matter couples minimally to metric, but metric couples non-
minimally to aether effective matter-aether coupling         
in strong-field regimes

● For strongly gravitating body (e.g. neutron star), binding energy 
depends on velocity relative to the aether                                  
(i.e. structure depends on motion relative to preferred frame, as 
expected from Lorentz violation!)

● Gravitational mass depends on velocity relative to the aether

         

Violations of strong equivalence principle (aka Nordtvedt effect 
in Brans Dicke theory, scalar tensor theories, etc)

S matter=Σi∫mi (γ)d τi

γ=Uμ uμ

ua
μ ∇μ(ma u ν)=−

d ma

d γ
uμ ∇ νU μ
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Whenever strong equivalence principle (SEP) is violated, dipolar 
gravitational-wave emission may be produced

● In GR, dipolar emission not present because of SEP + conservation 
of linear momentum

● If SEP is violated,

● Dipolar mode might be observable directly by interferometers, or 
indirectly via its backreaction on a binary's evolution

Why are astrophysical effects expected?

h∼ 1
R

d
dt

[m1(γ) x1+m2(γ) x2]∝(d log m1

d log γ
−

d log m2

d logγ )

not a wave!
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Why is this interesting?

Binary pulsars are the strongest test of GR to date! 

PSR B1913+16 
(Weisberg & Taylor 2004)

To calculate rate of change of 
orbital period we need sensitivities
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The sensitivity of neutron stars
(Yagi, Blas, Yunes, EB 2013; Yagi, Blas, EB, Yunes 2013) 

Calculation is non trivial!                                                             
Requires solving numerically for stars in motion relative to aether, to first 
order in velocity (thanks to Gauss theorem)

C
* 
= M

* 
/ R

*

Red = weak field prediction   
(Foster 2007)
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● Red = weak field prediction for α
1
= α

2
=0 (by requiring exactly same fluxes as GR)

● Combined constraints from almost-circular WD-pulsar and pulsar-pulsar systems 
    (PSR J1141-6545, PSR J0348+0432, PSR J0737-3039, PSR J1738+0333)
● Includes observational uncertainties (masses, spins, eccentricity, EOS)

Constraints on Lorentz violation in gravity
(Yagi, Blas, Yunes, EB 2013; Yagi, Blas, EB, Yunes 2013)
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Are BHs possible in LV gravity?

● BHs in GR defined in terms of spacetime causal structure 

eg in static spherical spacetime, horizon lies where light 
cones “tilt inwards” (cf Eddington Finkelstein coordinates).

● In GR, matter (photons) and gravitons have same speed c
● In LV gravity, photon, spin-2, spin-1 and spin-0 gravitons 

have different propagation speeds                              
different propagation cones                 multiple horizons

● If higher-order terms included in the action, non-linear 
dispersion relations for gravitons                                           
infinite speed in the UV limit               do BHs exist at all?

ω2=k 2+α k 4+...



GPhys Day, July 6, 2015 

A universal horizon for signals of infinite speed
(Blas and Sibiryakov 2011; EB, Jacobson & Sotiriou 2011)

Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405

A universal horizon for signals of infinite speed
(Blas and Sibiryakov 2011; EB, Jacobson & Sotiriou 2011)
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405

A universal horizon for signals of infinite speed
(Blas and Sibiryakov 2011; EB, Jacobson & Sotiriou 2011)
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405

A universal horizon for signals of infinite speed
(Blas and Sibiryakov 2011; EB, Jacobson & Sotiriou 2011)
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405

A universal horizon for signals of infinite speed
(Blas and Sibiryakov 2011; EB, Jacobson & Sotiriou 2011)
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Figure adapted from 
Cropp, Liberati and Mohd,
arXiv:1312.0405

A universal horizon for signals of infinite speed
(Blas and Sibiryakov 2011; EB, Jacobson & Sotiriou 2011)
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Modified gravity as substitute for Dark Matter?

● Unorthodox way to explain Dark Matter phenomenology at 
galactic scales (galaxy rotation curves, Tully-Fisher & Faber-
Jackson relations) is to modify Newtonian dynamics (MOND: 
Milgrom 1983) below acceleration

● Advantages: naturally explains appearance of universal scale       
              (no feedback)

● Open problems: predictions for larger scale cosmology need 
relativistic extension

a0∼√Λ

a≫a0:μ∼1

a≪a0 :μ(x)∼x

a0∼√Λ



GPhys Day, July 6, 2015 

A MOND Relativistic extension via Lorentz violations
(Blanchet & Marsat 2011, Bonetti & EB 2015)

1 PN rotation curves for a galaxy accreting matter from its surroundings

Strong coupling problem at 1PN if β+λ is small (Bonetti & EB, 2015)
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How to avoid strong coupling

Choose realistic galaxy masses and accretion rate and impose 
1PN terms do not dominate over Newtonian terms

Figure from Bonetti & EB 2015
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How to modify GR?

Lovelock's theorem 

Figure from 
Berti, EB et al 2015
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There is more to life than cosmology!

Table 
from 

Berti, EB 
et al 2015

Theory's properties
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There is more to life than cosmology!

Table 
from 

Berti, EB 
et al 2015

BH properties
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There is more to life than cosmology!

Table 
from 

Berti, EB 
et al 2015

NS properties
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Conclusions

● Lorentz violations in gravity generically introduces violations of strong 
equivalence principle and thus dipole emission

● Placing precise constraints with binary pulsars requires exact values 
of sensitivities (non-trivial calculation)

● Resulting constraints are strong-field and ~ order of magnitude 
stronger than previous ones

● BH solutions very similar to GR in the “exterior”, but causal structure 
is very different in the “interior” (universal horizon acts as boundary 
for perturbations with infinite speed)

● Dark-Matter phenomenology without Dark Matter on galactic scales

● Same blueprint may be followed with other promising gravity theories
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