Gravitational Waves with Pulsar Timing Arrays

Journée GPhys 2015

Antoine Lassus

- Introduction
- Pulsar Timing
- Gravitational Waves Signals & Detection
- Results from the EPTA dataset 2015

Introduction

McLaughlin (2014)

Introduction

Concept : Using pulsars as galactic scale interferometer

arms length ~ 100 pc - 1 kpc

Highly magnetized, fast rotating neutron stars

 $1.3 M_{\odot} < M < 2.1 M_{\odot}$ $10^{10} G < B < 10^{13} G$ 1.4 ms < P < 12 s

«Lighthouse effect» : sweeping radio beams as the pulsar rotates

Millisecond Pulsars : recycled pulsars

1.4 ms < P < 30 ms $\dot{P} \sim 10^{-20} \text{s.s}^{-1}$

Rotation axis

Kramer & Lorimer (2002)

$$\sigma_{TOA} \sim \frac{w}{SNR} \propto \frac{w}{S_{PSR}} \frac{T_{sys}}{A} \frac{1}{\sqrt{BT}}$$

Precision on TOAs as low as 30 ns

$$r = TOA_{obs} - TOA_{mod}$$

Minimizing the difference between Toas observed and predicted leads to construction of the timing model

Timing Model :

- Period and period derivative (spin-down rate)
- Sky position, proper motion
- Dispersion measure due to the ISM (free electron density)
- Distance (parallax)
- Binary parameters:
 - Pulsar mass and companion mass (shapiro delay)
 - Keplerian parameters :
 - semi major axis
 - inclination
 - eccentricity
 - orbital period
 - Post-Keplerian parameters:
 - precession
 - orbital period derivative
 - geodetic precession
 - periastron advance
 - gravitational redshift

Residuals for the pulsar J1909-3744 with best fit rms of 110 ns

Testing General Relativity

Double Pulsar J0737-3039

«Agreement with General Relativity within an uncertainty of 0.05%»

Kramer et al., Science 3 1 4, 97 (2006)

Constraining Alternate Theory

Scalar-Tensor Theories

From high asymetric WD-PSR binary

Freire et al., MNRAS 423, 3328 (2012)

Testing General Relativity

Gravitational Waves Indirect detection (Physics Nobel Prize 1993)

«Hulse-Taylor» Pulsar B1913+16

Gravitational Waves Signals & Detection

The gravitational wave modifies the path of the radio electromagnetic waves emitted by the pulsar inducing a modification of the observed frequency of the Toas.

$$r(t) = \int_0^t \frac{\nu(t') - \nu_0}{\nu_0} dt'$$

$$\frac{\nu(t) - \nu_0}{\nu_0} = \frac{1}{2} \frac{\hat{n}^i_{\alpha} \hat{n}^j_{\alpha}}{1 + \hat{n}_{\alpha} \cdot \hat{k}} \Delta h_{ij}$$

$$\Delta h_{ij} = h_{ij}(t_p) - h_{ij}(t)$$

Correlated signal between the pulsars of the array when observed from Earth

Gravitational Waves Signals & Detection

Expected signal in the nanoHertz regime from Super-Massive Black Holes Binaries

- Isotropic or Anisotropic stochastic GW background from a collection of sources

$$h_c(f) = A\left(\frac{f}{f_0}\right)^{-2/3}$$

- Monochromatic signal from distinguishable single sources above the background

$$\Delta h_{ij} = h_{ij}(t_p) - h_{ij}(t)$$

 $\begin{array}{rcl} h_{+}(t) &=& A(1 + \cos^{2} i) \cos(2\pi f t + \phi_{0}) \\ h_{\times}(t) &=& -2A \cos i \sin(2\pi f t + \phi_{0}) \end{array}$

The European Pulsar Timing Array

Jodrell Bank (UK), 74m Westerbork (Neartherland), 93m (eff) Nançay (France), 94m (eff) Effelsberg (Germany), 100m SRT (Sardinia, Italy), 64m

LEAP : simultaneous observations from all observatories 194m equivalent dish

2015 Dataset of 42 MSPs (Desvignes & EPTA collaboration in prep.)

							_						
PSR JName	Observatories	$N_{\rm TOA}$	$T_{\rm span}$	RMS	Period	$P_{\rm orb}$	J1751 - 2857	jbo, nrt	144	8.3	3.0	3.9	110.75
		1011	(vr)	(μs)	(ms)	(d)	J1801 - 1417	jbo, nrt	126	7.1	2.6	3.6	<u> </u>
			() /	(1)			J1802 - 2124	jbo, nrt	522	7.2	2.7	12.6	0.70
							J1804 - 2717	jbo, nrt	116	8.4	3.1	9.3	11.13
J0030 + 0451	eff, jbo, nrt	907	15.1	4.1	4.9		J1843-1113	jbo, nrt, wsrt	224	10.1	0.71	1.8	
J0034 - 0534	nrt, wsrt	276	13.5	4.0	1.9	1.59							
J0218 + 4232	eff, jbo, nrt, wsrt	1196	17.6	7.4	2.3	2.03	J1853 + 1303	jbo, nrt	101	8.4	1.6	4.1	115.65
J0610 - 2100	jbo, nrt	1034	6.9	4.9	3.9	0.29	J1857 + 0943	eff, jbo, nrt, wsrt	444	17.3	1.7	5.4	12.33
J0613 - 0200	eff, jbo, nrt, wsrt	1369	16.1	1.8	3.1	1.20	J1909-3744	nrt	425	9.4	0.13	2.9	1.53
							J1910 + 1256	jbo, nrt	112	8.5	1.9	5.0	58.47
J0621 + 1002	eff, jbo, nrt, wsrt	673	11.8	15.6	28.9	8.32	J1911+1347	jbo, nrt	140	7.5	1.4	4.6	
J0751 + 1807	eff, jbo, nrt, wsrt	796	17.6	2.4	3.5	0.26							
J0900 - 3144	jbo, nrt	875	6.9	3.1	11.1	18.74	J1911-1114	jbo, nrt	130	8.8	4.8	3.6	2.72
J1012 + 5307	eff, jbo, nrt, wsrt	1459	16.8	1.6	5.3	0.60	J1918-0642	jbo, nrt, wsrt	278	12.8	3.0	7.6	10.91
J1022 + 1001	eff, jbo, nrt, wsrt	908	17.5	2.5	16.5	7.81	J1939 + 2134	eff, jbo, nrt, wsrt	3174	24.1	34.5	1.6	
							J1955 + 2908	ibo. nrt	157	8.1	6.5	6.1	117.35
J1024 - 0719	eff, jbo, nrt, wsrt	561	17.3	1.7	5.2		J2010 - 1323	ibo, nrt	390	7.4	1.9	5.2	
J1455 - 3330	jbo, nrt	524	9.2	2.7	8.0	76.17	02010 1020	J00, m0	000	1.1	1.0	0.1	
J1600 - 3053	jbo, nrt	531	7.7	0.46	3.6	14.35	12019 ± 2425	ibo nrt	130	91	9.6	3.9	76 51
J1640 + 2224	eff, jbo, nrt, wsrt	595	17.3	1.8	3.2	175.46	12033 ± 1734	jbo, nrt	10/	7.0	12.0	5.0	56 31
J1643 - 1224	eff, jbo, nrt, wsrt	759	17.3	1.7	4.6	147.02	12104 2259	jbo, mt	544	0.4	2.1	1.0	00.01
							$J_{2124} = 3558$ $J_{2145} = 0750$	JDO, III t	944 800	9.4 175	1.0	4.9	6.91
J1713+0747	eff, jbo, nrt, wsrt	1188	17.7	0.68	4.6	67.83	J2143 - 0750 J2220 + 2642	en, jbo, nrt, wsrt	000	17.0	1.0	10.1	0.84
J1721 - 2457	$\operatorname{nrt}, \operatorname{wsrt}$	150	12.8	11.7	3.5	_	J2229+2043	еп, jbo, nrt	310	8.2	4.2	3.0	93.02
J1730 - 2304	eff, jbo, nrt	285	16.7	3.9	8.1		1001 - 1400	<i>(</i> (, :)		1 7 0	0.4	0.4	0.40
J1738 + 0333	jbo, nrt	318	7.3	3.0	5.9	0.35	J2317 + 1439	eff, jbo, nrt, wsrt	555	17.3	2.4	3.4	2.46
J1744-1134	eff, jbo, nrt, wsrt	536	17.3	0.86	4.1	—	J2322+2057	jbo, nrt	229	7.9	5.9	4.8	

5 MSPs with rms under 1 μs

Results on GWB, isotropic (Lentati & EPTA collaboration accepted in MNRAS)

Model	95% upper limit
Stochastic GWB	
Fixed Noise - Fixed Spectral Index Varying Noise - Fixed Spectral Index Additional Common Signals - Fixed Spectral Index	$ \begin{array}{r} 1.7 \times 10^{-15} \\ 3.0 \times 10^{-15} \\ 3.0 \times 10^{-15} \end{array} $
Fixed Noise - Varying Spectral Index Varying Noise - Varying Spectral Index Additional Common Signals - Varying Spectral Index	8×10^{-15} 1.3×10^{-14} 1.3×10^{-14}

Results on anisotropy shows consistency with isotropy (Taylor & EPTA collaboration accepted in PRL)

Results on Single Sources (Babak & EPTA collaboration submitted to MNRAS)

Several Method have been used :

- Frequentist approach for non evolving sources (Ellis et al. 2012)

- Frequentist approach for evolving sources (Babak & Sesana 2012, Petiteau et al. 2013)
- Bayesian approach for evolving sources with full signal (Lassus et al. in prep.)
- Bayesian approach for evolving sources with Earth term only
- Bayesian approach for non evolving sources with phase marginalization (Taylor et al. 2014)

Results on Single Sources (Babak & EPTA collaboration submitted to MNRAS)

Results on Single Sources (Babak & EPTA collaboration submitted to MNRAS)

Sensitivity Sky Map for the frequentisit method with evolving sources at 6.3 nHz

Sensitivity Sky Map for the bayesian method with non evolving sources at 7 nHz

Results on Single Sources (Babak & EPTA collaboration submitted to MNRAS)

In the our best frequency interval (5-7 nHz) :

 $6 \times 10^{-15} < A_{95\%} < 1.2 \times 10^{-14}$

We can exclude the presence of SMBHBs with separation < 0.01 pc to a distance of 25Mpc (well beyond Virgo) for : $\mathcal{M}_c > 10^9 \mathrm{M}_\odot$

We can exclude the presence of SMBHBs with separation < 0.01pc to a distance of 25Mpc (twice the distance to Coma cluster) for :

 $\mathcal{M}_c > 10^{9.5} \mathrm{M}_{\odot}$

Thank You !

Max-Planck-Institut für Radioastronomie