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Tests of the gravitational dynamics

2

• How to test the form of the metric/the Einstein field equations ? Two 
frameworks widely used so far:

1 C. Will, LRR, 9, 2006 
  “Theory and Experiment in Grav. Physics”, C. Will, 1993

2 E.G. Adelberger, Progress in Part. and Nucl. Phys., 62/102, 2009 
  “The Search for Non-Newtonian gravity”, E. Fischbach, C. Talmadge, 1998



Tests of the gravitational dynamics
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• How to test the form of the metric/the Einstein field equations ? Two 
frameworks widely used so far:

- powerful phenomenology making an interface between 
theoretical development and experiments

- metric parametrized by 10 dimensionless coefficients

- 𝛾 and 𝛽 whose values are1 in GR

1) Parametrized Post-Newtonian Formalism1

1 C. Will, LRR, 9, 2006 
  “Theory and Experiment in Grav. Physics”, C. Will, 1993

ds2 = (1 + 2⇤N + 2�⇤2
N + . . . )dt2 � (1� 2⇥⇤N + . . . )d⌅x2

2 E.G. Adelberger, Progress in Part. and Nucl. Phys., 62/102, 2009 
  “The Search for Non-Newtonian gravity”, E. Fischbach, C. Talmadge, 1998
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theoretical development and experiments
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1 C. Will, LRR, 9, 2006 
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- modification of Newton potential of the form of a Yukawa potential

⇥(r) =
GM

c2r

⇣
1 + �e�r/�

⌘

2 E.G. Adelberger, Progress in Part. and Nucl. Phys., 62/102, 2009 
  “The Search for Non-Newtonian gravity”, E. Fischbach, C. Talmadge, 1998



Constraints on PPN parameters
- Measurement of the 

Shapiro time delay with 
Cassini1

© NASA

� � 1 = (2.1± 2.3)⇥ 10�5

1 B. Bertotti, L. Iess, P. Tortora, Nature, 425/374, 2003

- Dynamic of the orbit of 
the Moon with LLR3

- Planetary ephemerides INPOP2

� � 1 = (2.1± 1.1)⇥ 10�4

3 J. Williams, S. Turyshev, D. Boggs, IJMP D, 18/1129, 2009

2 A. Verma et al, A & A, 561, A115, 2014

© NASA

� � 1 = (0.2± 2.5)⇥ 10�5



Constraints on Fifth force formalism
• Search for a deviation of the Newton potential of the form of a Yukawa 

potential1

This is comparable with the estimate using Venus Express and Mars
Express range data by Fienga et al. (2009b). From estimation of the
ratio of inertial to gravitational mass of the Moon using lunar laser
ranging data, Williams et al. (2004) get an estimate of bPPN more
accurate by a factor of 2.

The Mars range data can be used to set limits on the deviation of
gravity from the Newtonian inverse-square law at Solar-System
length scales. From the Mars ranging data we estimate an upper
bound for an anomalous radial acceleration from the Sun as
<3 ! 10"14 m/s2 for the Earth–Moon barycenter and <8 !
10"14 m/s2 for Mars. These levels are several orders of magnitude
lower than the anomalous acceleration on spacecraft reported by
Anderson et al. (1998), who recognized that such an effect has been
ruled out for the inner planets. Alternatively, the Mars ranging data
can be used to estimate the amplitude of a modified gravitational
potential in the Yukawa form of

/ðrÞ ¼ 1=r & ½1þ ae"r=k):

Fig. 31 plots the estimated value of the dimensionless scale factor a
as a function of distance at the 95% confidence level. Fig. 31 also
shows estimates of a at other length scales from other experiments
as summarized by Adelberger et al. (2003). The shaded areas in the
figure are excluded based on experiments including this analysis of
Mars range data.

12. Conclusions

The global gravity field of Mars has been significantly improved
using additional tracking data and model improvements. The rec-
ommended field is MRO110B2, since it has a looser constraint with
less suppression of high frequency amplitudes. The lower altitude
MRO tracking data is the main cause for the improved spherical
harmonic gravity resolution of Mars from degree 70 (MGS95J) to
degree 90. The near sectoral coefficients of the gravity field are bet-
ter determined and their uses are a possible alternative for studies
of features in an equatorial band of ±50!. Other improvements such
as thrust modeling on MGS and solar pressure modeling of atmo-
spheric dust for Mars Odyssey have improved orbit determination

accuracy and resulted in consistent Love number determinations
for all spacecraft.

Our best MGS k2 Love number solution is k2 = 0.173 ± 0.009.
After correction for solid friction, atmospheric tides, and anelastic
softening, we obtain k2 = 0.159 ± 0.009. With the improved preces-
sion solution ( _w ¼ "7594* 10mas=year) and polar moment
(C=MR2

e ¼ 0:3644* 0:0005) from additional years of orbiter track-
ing, the core radius is constrained to 1630 km 6 Rf 6 1830 km
assuming a plausible range of internal models.

Time variations of the odd zonal gravity parameters and length-
of-day solutions have been compared with predictions from two
GCM models and two sets of Odyssey neutron spectrometer data
detailing ice cap history. Orbiter LOD solutions data match well
with GCM AMES and LMD predictions, with LMD being slightly
better. The Odyssey NS data and LMD GCM model match best with
observed seasonal gravity fromMGS and Odyssey, while HEND and
AMES GCM have about a factor of 2 larger residuals. The fit to the
NS data is improved if we rescale its amplitude by a factor of 1.09
and this seems to be a plausible correction based on potential NS
data error sources. We were unable to confirm inter-annual
changes seen in 2 years of NS data for a complete Mars year. There
is an intriguing signal in the doubly differenced J3 data that cannot
be explained. It is possible that atmospheric drag and AMD errors
may contribute to MGS uncertainty in some subtle way that masks
year to year changes.

With the increased time span of the data, Mars ranging data
now allow for mass estimates of 21 asteroids, as compared to 5
asteroid mass estimates in previous results (Konopliv et al.,
2006). Uncertainties in the mass estimates now account for uncer-
tainties in other asteroid masses that are not estimated. Solutions
mostly agree within uncertainties for results from independent
data sets. The Mars ranging data also strongly determines the solar
mass parameter (GMSun = 132712440042 ± 10 km3/s2) and Earth–
Moon mass ratio (MEarth/MMoon = 81.3005694 ± 0.0000015) and
constrains mass loss of the Sun to be d(GMSun)/dt & 1/
GMSun = 0.1 ! 10"13/year ± 1.6 ! 10"13/year. Variations of gravity
models from general relativity are also constrained, although the
PPN estimates are not as accurate as results from other spacecraft
and LLR data.

Future MRO and Mars Odyssey spacecraft data will improve all
aspects of the results discussed above, but only incrementally. Pos-
sible significant improvements in the Mars static gravity field are
from lower altitude spacecraft or improved tracking accuracy such
as Ka-band. Improvement of seasonal gravity detection most likely
requires an onboard accelerometer together with improved track-
ing. Mars ranging accuracy of +10-cm maybe possible with im-
proved DSN station calibration. Although the Dawn mission will
determine the masses of Vesta and Ceres, these constraints have
a minimal effect on the separability of many asteroid perturba-
tions, but may help estimates of asteroids that are strongly corre-
lated such as Thalia.
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function of length scale. The shaded regions are excluded by various experiments,
including this analysis for Mars spacecraft range data shaded in orange.

426 A.S. Konopliv et al. / Icarus 211 (2011) 401–428

from A.Konopliv et al, 
Icarus, 211/401, 2011

⇥(r) =
GM

c2r

⇣
1 + �e�r/�

⌘

Excluded area for fifth force

1 E.G. Adelberger, Progress in Part. and Nucl. Phys., 62/102, 2009 
   “The Search for Non-Newtonian gravity”, E. Fischbach, C. Talmadge, 1998

• Very good constraints 
in this formalism 
except at small and 
large distances



Is it enough ?

• Still strong motivations to improve the current tests:

- tensor-scalar theories “naturally” converging towards GR1

- screening theories: modification of GR “hidden” in certain region of 
space-time: chameleons2, symmetron3, Vainshtein mechanism4

- tensor-scalar theories with a decoupling of the scalar field5

1 T. Damour, K. Nordtvedt, PRD 48/3436 and PRL 70/2217, 1993
2 J. Khoury, A. Weltman, PRD 69/044026 and PRL 93/171104, 2004
3 K. Hinterbichler, et al, PRD84/103521 and PRL104/231301, 2010

4 A. Vainshtein, Phys. Let. B, 39/393, 1972
5 T. Damour, A. Polyakov, Nucl. Phys. B, 1994
  O. Minazzoli, A. Hees, PRD 88/1504, 2013 5

We have strong motivations to pursue this kind of tests!



Is it necessary to go beyond ?

M.T. Jaekel, S. Reynaud, CQG, 2005 J.P. Bruneton et al, Adv. in Astr., 2012

Post Einsteinian Grav.

- phenomenology

- non local field equation:  
       quantization ?

- metric: parametrized by  
2 arbitrary functions

Gµ⇤ [k] = � �⇥
µ⇤ [k]T�⇥ [k]

Q. Bailey, A. Kostelecky, PRD, 2006

SME

- phenomenology

- violation of Lorentz 
symmetry coming from a 
fundamental level

- action parametrized by a 
tensor ̄sµ⌫

Fab Four

- General 2nd order tensor-
scalar theory

- developed in cosmology: 
Dark Energy

- weak-field metric: 
parametrized by 4 
parameters

MOND
- phenomenology

- developed for galactic observations: Dark 
Matter (galactic rotation curves)

- main effect in the Solar System: External 
Field Effect

U =
GM

r
+

Q2

2
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L. Blanchet, J. Novak, MNRAS, 2011
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PPN formalism : 𝛾, 𝜷, ...

5th force formalism: 𝛼, 𝜆
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Currently: lack of constraints from Solar System for these 
theories !

Interesting to consider them and to constrain them using 
Solar System observations
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GAIA

• Launched in December 19 2013

• Successor of Hipparcos, it will bring some huge improvements:

- observation of ~ 1 billion stars, 3D mapping of our galaxy

- parallax to 25 𝜇as and proper motion to 15 𝜇as/yr

- colours from low resolution spectro-photometry

- radial velocities from spectrometer

- astrometric and photometric measurements for a large number of 
SSOs, mainly asteroids: high precision on a CCD basis



Asteroids: Gaia

8

• Use GAIA asteroid observations to test GR: advantage of a large 
samples of different orbital parameters (300 000 objects)  
 - decorrelation of parameters 
 - complementary to planetary ephemerides (different bodies, different 
type of observations, different method to analyze the data)

• accuracy ~ 0.2-0.5 mas



Simulations of Gaia observations

Initial condition
10 000 ast.

Orbit 
propagation

Observations 
time (with Gaia 
scanning law)

9

done by Gaia WP DU460
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Simulations of Gaia observations

Initial condition
10 000 ast.

Orbit 
propagation

Observations 
time (with Gaia 
scanning law)

9

Astrometric 
observables + 
partials der.

Sim. in alternative 
theory + var. 

equation

Inversion of the 
normal matrix (fit 
of parameters)

- sensitivity  
- correlations 
- bias

- local parameters (IC)  
- global parameters (grav. theory, J2, …)

done by Gaia WP DU460



Parameters considered
• local parameters: 6 initial conditions / asteroids (60 000 par.)

• global parameters:

- Solar Quadrupole moment J2.

- Post-Newtonian Parameter 𝛽

- Sun Lense-Thirring effect: depends on the Sun spin S

- Fifth Force formalism: (𝜆, 𝛼)

- Time variation of G: constant 

- Periodic variation of G

- Standard Model Extension formalism: 

• 10 000 asteroids with astrometric accuracy of 0.2 mas

Ġ/G

s̄µ⌫



PPN formalism and Sun J2
• highly correlated parameters: one secular effect on orbital dynamics 

(advance of the perihelion)

• various asteroids orbital parameters help to decorrelate

• sensitivity:

• correlation ~ 0.56

• Not as good as planetary ephemerides but: independent analysis, not 
suffering from the same systematics ⇒ interesting complementary check

Chapitre 1 – Contexte général et état de l’art 28

principal e↵et séculaire résultant de cette métrique consiste en une précession des périhélies des

planètes qui est donnée par

⌧
d!

dt

�
= (2 + 2� � �)n

GM

c2a(1 � e2)
+

3

2
n

J
2

R2

a2(1 � e2)2
(1.20)

où ! est l’argument du périhélie,
⌦

d!
dt

↵
représente la variation séculaire de l’argument du périhélie,

a est le demi-grand axe de la planète, e son excentricité et n = 2⇡
T est le moyen mouvement avec

T la période orbitale. Le second terme représente la contribution du J
2

solaire sur l’avance des

périhélies avec J
2

le moment quadrupolaire et R le rayon moyen du corps central. La précession

relativiste du périhélie de la planète Mercure de 42.98”/siècle était une observation inexpliquée

avant l’avènement de la RG. Elle constitue un des tests de la RG et permet de contraindre les

paramètres PPN comme indiqué à la table 1.1 (notons qu’une des raisons de la faible précision ob-

tenue provient de l’incertitude sur le moment quadrupolaire du Soleil J
2

qui est fortement corrélé

avec la combinaison des paramètres PPN qui interviennent dans l’expression de la précession du

périhélie). Cependant, les tests modernes de la gravitation n’utilisent plus uniquement l’avance

du périhélie de Mercure pour contraindre les paramètres PPN mais ils utilisent la dynamique

orbitale de l’ensemble des planètes du Système Solaire (à partir des éphémérides planétaires).

Comme on peut le voir à partir de l’équation (1.20), il est impossible de décorréler les paramètres

� et � dans les éphémérides, c’est pourquoi, la valeur de � est généralement supposée être celle

obtenue par l’expérience Cassini (voir ci-dessous dans la section relative au délai Shapiro) et

le paramètre � est estimé par une analyse des éphémérides planétaires. Il existe actuellement

essentiellement trois éphémérides di↵érentes :

– les éphémérides russes EPM (Ephemerides of Planets and the Moon) [Pitjeva, 2005]. Les

tests de relativité réalisés à l’aide de ces éphémérides sont présentés dans Pitjeva [2010].

En particulier, la valeur de � est contrainte à |� � 1| < 2 ⇥ 10�4 tandis que l’estimation

du J
2

solaire est donnée par J
2

= (2.0 ± 0.5) ⇥ 10�7.

– les éphémérides américaines du Jet Propulsion Laboratory DE [Newhall et al., 1983]. Les

tests de gravitation réalisés à l’aide de ces éphémérides sont présentés dans Folkner [2010b].

En particulier, la combinaison 2(� � 1) � (� � 1) est estimée à (4 ± 12) ⇥ 10�4 ce qui

donne une estimation de � après utilisation de la contrainte Cassini pour � : � � 1 =

(�3.58 ± 11.54) ⇥ 10�4. L’incertitude obtenue est plus grande que celles obtenues avec les

autres éphémérides du fait du traitement très conservatif des incertitudes sur les masses

des astéröıdes [Folkner, 2010b]. Depuis, l’étude orbitale de di↵érentes missions spatiales ont

permis d’a�ner l’avance du périhélie de Mars et d’obtenir une estimation de � beaucoup

plus compétitive [Konopliv et al., 2011] : � � 1 = (0.4 ± 2.4) ⇥ 10�4.

– les éphémérides françaises INPOP (Intégrateur Numérique Planétaire de l’Observatoire de

Paris) [Fienga et al., 2008, 2009, 2011]. Les tests de gravitation réalisés à l’aide d’INPOP

sont présentés dans Fienga et al. [2010, 2011]. En particulier, la valeur de � (lorsque � est

fixé à la valeur obtenue par Cassini) est estimée à

� � 1 = (�0.41 ± 0.78) ⇥ 10�4 (1.21)

tandis que le J
2

solaire est estimé à J
2

= (2.4 ± 0.25) ⇥ 10�7.

La table 1.2 reprend les di↵érentes estimations fournies actuellement par les diverses éphémérides.

Toutes les valeurs présentées sont cohérentes entre elles. Nous pouvons conclure que les éphémérides

permettent une détermination de � à un ordre de grandeur de 10�4.

INPOP results from A. Fienga et al, arXiv:1409.4932, 2014

Tables

A. Hees

Bla

Table 1: Bla
SME Parameter sensitivity (�)

s̄XX � s̄Y Y 9⇥ 10�12

s̄XX + s̄Y Y � s̄ZZ 2⇥ 10�11

s̄XY 4⇥ 10�12

s̄XZ 2⇥ 10�12

s̄Y Z 4⇥ 10�12

s̄TX 1⇥ 10�8

s̄TY 2⇥ 10�8

s̄TZ 4⇥ 10�8

s̄XX � s̄Y Y s̄XX + s̄Y Y � s̄ZZ s̄XY s̄XZ s̄Y Z s̄TX s̄TY s̄TZ

s̄XX � s̄Y Y 1
s̄XX + s̄Y Y � s̄ZZ 0.28 1

s̄XY -0.06 -0.01 1
s̄XZ -0.17 -0.06 0.46 1
s̄Y Z -0.16 0.71 0.01 0.01 1
s̄TX 10�3 -0.01 -0.01 10�3 -0.01 1
s̄TY 0.03 0.09 0.01 -0.01 0.02 -0.16 1
s̄TZ -0.02 -0.1 -0.01 0.01 -0.02 0.13 -0.67 1

J2 �
GAIA �J2 ⇠ 10�7 �� ⇠ 7⇥ 10�4

INPOP (2.24± 0.15)⇥ 10�7 (�0.25± 6.7)⇥ 10�5

1



Lense-Thirring effect

12

• Relativistic frame dragging effect produced by the rotation of a body 
(Sun or Earth)

• Detected with the orbit of LAGEOS spacecraft @ the level of 10% 
(controversy between L. Iorio and I. Ciufolini)

• Influence on a gyroscope detected with Gravity Probe B @ the level of 
20%

see Ciufolini et al, Nature 431, 958, 2004 
       L. Iorio et al, APSS 331, 351, 2011

see C. Everitt, et al, Phys. Rev. Letters 106, 221101, 2011



Lense-Thirring effect

12

• Lense-Thirring impossible to be estimated in planetary ephemerides: 
completely correlated with J2

• Asteroids can decorrelate but Gaia does not have enough accuracy!

• But… not including the LT in the modeling leads to bias:

- 10-8 on the J2 (i.e. 10% of its value)

- 5x10-5 on the β PPN 

• Relativistic frame dragging effect produced by the rotation of a body 
(Sun or Earth)

• Detected with the orbit of LAGEOS spacecraft @ the level of 10% 
(controversy between L. Iorio and I. Ciufolini)

• Influence on a gyroscope detected with Gravity Probe B @ the level of 
20%

see Ciufolini et al, Nature 431, 958, 2004 
       L. Iorio et al, APSS 331, 351, 2011

see C. Everitt, et al, Phys. Rev. Letters 106, 221101, 2011

see W. Folkner et al, IPN Prog. Rep. 42, 196, 2014
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see W. Folkner et al, IPN Prog. Rep. 42, 196, 2014

Similar conclusions seem to hold for planet. ephem. !



Fifth force

13

• correlation with Sun mass to be assessed

• Use GAIA asteroid observations to constrain the 5th force parameters

This is comparable with the estimate using Venus Express and Mars
Express range data by Fienga et al. (2009b). From estimation of the
ratio of inertial to gravitational mass of the Moon using lunar laser
ranging data, Williams et al. (2004) get an estimate of bPPN more
accurate by a factor of 2.

The Mars range data can be used to set limits on the deviation of
gravity from the Newtonian inverse-square law at Solar-System
length scales. From the Mars ranging data we estimate an upper
bound for an anomalous radial acceleration from the Sun as
<3 ! 10"14 m/s2 for the Earth–Moon barycenter and <8 !
10"14 m/s2 for Mars. These levels are several orders of magnitude
lower than the anomalous acceleration on spacecraft reported by
Anderson et al. (1998), who recognized that such an effect has been
ruled out for the inner planets. Alternatively, the Mars ranging data
can be used to estimate the amplitude of a modified gravitational
potential in the Yukawa form of

/ðrÞ ¼ 1=r & ½1þ ae"r=k):

Fig. 31 plots the estimated value of the dimensionless scale factor a
as a function of distance at the 95% confidence level. Fig. 31 also
shows estimates of a at other length scales from other experiments
as summarized by Adelberger et al. (2003). The shaded areas in the
figure are excluded based on experiments including this analysis of
Mars range data.

12. Conclusions

The global gravity field of Mars has been significantly improved
using additional tracking data and model improvements. The rec-
ommended field is MRO110B2, since it has a looser constraint with
less suppression of high frequency amplitudes. The lower altitude
MRO tracking data is the main cause for the improved spherical
harmonic gravity resolution of Mars from degree 70 (MGS95J) to
degree 90. The near sectoral coefficients of the gravity field are bet-
ter determined and their uses are a possible alternative for studies
of features in an equatorial band of ±50!. Other improvements such
as thrust modeling on MGS and solar pressure modeling of atmo-
spheric dust for Mars Odyssey have improved orbit determination

accuracy and resulted in consistent Love number determinations
for all spacecraft.

Our best MGS k2 Love number solution is k2 = 0.173 ± 0.009.
After correction for solid friction, atmospheric tides, and anelastic
softening, we obtain k2 = 0.159 ± 0.009. With the improved preces-
sion solution ( _w ¼ "7594* 10mas=year) and polar moment
(C=MR2

e ¼ 0:3644* 0:0005) from additional years of orbiter track-
ing, the core radius is constrained to 1630 km 6 Rf 6 1830 km
assuming a plausible range of internal models.

Time variations of the odd zonal gravity parameters and length-
of-day solutions have been compared with predictions from two
GCM models and two sets of Odyssey neutron spectrometer data
detailing ice cap history. Orbiter LOD solutions data match well
with GCM AMES and LMD predictions, with LMD being slightly
better. The Odyssey NS data and LMD GCM model match best with
observed seasonal gravity fromMGS and Odyssey, while HEND and
AMES GCM have about a factor of 2 larger residuals. The fit to the
NS data is improved if we rescale its amplitude by a factor of 1.09
and this seems to be a plausible correction based on potential NS
data error sources. We were unable to confirm inter-annual
changes seen in 2 years of NS data for a complete Mars year. There
is an intriguing signal in the doubly differenced J3 data that cannot
be explained. It is possible that atmospheric drag and AMD errors
may contribute to MGS uncertainty in some subtle way that masks
year to year changes.

With the increased time span of the data, Mars ranging data
now allow for mass estimates of 21 asteroids, as compared to 5
asteroid mass estimates in previous results (Konopliv et al.,
2006). Uncertainties in the mass estimates now account for uncer-
tainties in other asteroid masses that are not estimated. Solutions
mostly agree within uncertainties for results from independent
data sets. The Mars ranging data also strongly determines the solar
mass parameter (GMSun = 132712440042 ± 10 km3/s2) and Earth–
Moon mass ratio (MEarth/MMoon = 81.3005694 ± 0.0000015) and
constrains mass loss of the Sun to be d(GMSun)/dt & 1/
GMSun = 0.1 ! 10"13/year ± 1.6 ! 10"13/year. Variations of gravity
models from general relativity are also constrained, although the
PPN estimates are not as accurate as results from other spacecraft
and LLR data.

Future MRO and Mars Odyssey spacecraft data will improve all
aspects of the results discussed above, but only incrementally. Pos-
sible significant improvements in the Mars static gravity field are
from lower altitude spacecraft or improved tracking accuracy such
as Ka-band. Improvement of seasonal gravity detection most likely
requires an onboard accelerometer together with improved track-
ing. Mars ranging accuracy of +10-cm maybe possible with im-
proved DSN station calibration. Although the Dawn mission will
determine the masses of Vesta and Ceres, these constraints have
a minimal effect on the separability of many asteroid perturba-
tions, but may help estimates of asteroids that are strongly corre-
lated such as Thalia.
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Fifth force

13

• correlation with Sun mass to be assessed

• Use GAIA asteroid observations to constrain the 5th force parameters

This is comparable with the estimate using Venus Express and Mars
Express range data by Fienga et al. (2009b). From estimation of the
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length scales. From the Mars ranging data we estimate an upper
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<3 ! 10"14 m/s2 for the Earth–Moon barycenter and <8 !
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/ðrÞ ¼ 1=r & ½1þ ae"r=k):
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shows estimates of a at other length scales from other experiments
as summarized by Adelberger et al. (2003). The shaded areas in the
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(C=MR2

e ¼ 0:3644* 0:0005) from additional years of orbiter track-
ing, the core radius is constrained to 1630 km 6 Rf 6 1830 km
assuming a plausible range of internal models.

Time variations of the odd zonal gravity parameters and length-
of-day solutions have been compared with predictions from two
GCM models and two sets of Odyssey neutron spectrometer data
detailing ice cap history. Orbiter LOD solutions data match well
with GCM AMES and LMD predictions, with LMD being slightly
better. The Odyssey NS data and LMD GCM model match best with
observed seasonal gravity fromMGS and Odyssey, while HEND and
AMES GCM have about a factor of 2 larger residuals. The fit to the
NS data is improved if we rescale its amplitude by a factor of 1.09
and this seems to be a plausible correction based on potential NS
data error sources. We were unable to confirm inter-annual
changes seen in 2 years of NS data for a complete Mars year. There
is an intriguing signal in the doubly differenced J3 data that cannot
be explained. It is possible that atmospheric drag and AMD errors
may contribute to MGS uncertainty in some subtle way that masks
year to year changes.

With the increased time span of the data, Mars ranging data
now allow for mass estimates of 21 asteroids, as compared to 5
asteroid mass estimates in previous results (Konopliv et al.,
2006). Uncertainties in the mass estimates now account for uncer-
tainties in other asteroid masses that are not estimated. Solutions
mostly agree within uncertainties for results from independent
data sets. The Mars ranging data also strongly determines the solar
mass parameter (GMSun = 132712440042 ± 10 km3/s2) and Earth–
Moon mass ratio (MEarth/MMoon = 81.3005694 ± 0.0000015) and
constrains mass loss of the Sun to be d(GMSun)/dt & 1/
GMSun = 0.1 ! 10"13/year ± 1.6 ! 10"13/year. Variations of gravity
models from general relativity are also constrained, although the
PPN estimates are not as accurate as results from other spacecraft
and LLR data.

Future MRO and Mars Odyssey spacecraft data will improve all
aspects of the results discussed above, but only incrementally. Pos-
sible significant improvements in the Mars static gravity field are
from lower altitude spacecraft or improved tracking accuracy such
as Ka-band. Improvement of seasonal gravity detection most likely
requires an onboard accelerometer together with improved track-
ing. Mars ranging accuracy of +10-cm maybe possible with im-
proved DSN station calibration. Although the Dawn mission will
determine the masses of Vesta and Ceres, these constraints have
a minimal effect on the separability of many asteroid perturba-
tions, but may help estimates of asteroids that are strongly corre-
lated such as Thalia.
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Standard Model Extension (SME)
• Recent phenomenology developed to consider hypothetical violations 

of the Lorentz invariance in all sector of physics — violations coming 
from a more fundamental theory (string theory, loop quantum gravity, 
non-commutative theory, …)

• Pure gravity sector1 depends on 8 parameters       : Lagrangian based 
approach (vs PPN based on the metric). The metric does not enter 
PPN formalism

• Quite few analysis in SME framework: LLR and atom interferometry2

s̄µ⌫

What about SME ?
• SME does not enter PPN or fifth force formalisms1 !

• metric parametrizing a violation of Lorentz symmetry in the gravitational 
sector depends1 on 

• LLR data analyzed within the framework of SME. Limits on linear 
combinations of SME parameters2

1 Q. Bailey, V.A. Kostelecky, PRD, 74/045001, 2006
2 J. Battat, J. Chandler, C. Stubbs, PRL, 99/241103, 2007

s̄µ⌫

performs a weighted, linear least-squares analysis to cal-
culate adjustments to the model parameters in order to
minimize the difference between the observations and the
model.

If one is concerned about nonlinearities, one can solve
for model parameters and then reintegrate the equations of
motion, iterating until the parameter estimates converge.
Over the past several decades the traditional (i.e., non-
SME) analyses have done just that, resulting in agreement
between model and data at the few centimeter level.
Current model parameter values are therefore highly re-
fined, and the weighted least-squares analysis sits firmly in
the linear regime. As a result, it is not necessary to iterate
when estimating new model parameters. Because the lunar
range model is linear in the !sLLR parameters [see Eq. (1)
and Table I], the inclusion of these parameters in the
analysis preserves linearity, as confirmed by the small
adjustments to non-SME parameters seen in our solutions.
Performing an iterative solution for SME parameters re-
quires the inclusion of the SME terms in the equations of
motion, which has not yet been done.

We computed the partial derivatives of lunar range with
respect to each !sLLR parameter (see Table II) and provided
this information to PEP prior to solving for the best-fit
parameter adjustments. This approach is equivalent to ex-
plicitly including the !sLLR parameters in the equations of
motion and setting their a priori values to zero [in which
case !rSME!t" # 0 so there is no SME contribution to the
lunar orbit]. We therefore treated any Lorentz violation as a

small perturbation to a known orbit. The terms in the
covariance matrix quantify ‘‘cross-talk’’ between SME
parameters and other fitted quantities.

The solar system is complex. When modeling the ex-
pected light travel time between an LLR station on the
Earth and a reflector on the lunar surface, one must account
not only for the gravitational perturbations from the eight
planets and Pluto, but also those of asteroids, asphericities
in the Sun, Earth, and Moon, as well as various relativistic
and nongravitational effects (for a more complete descrip-
tion of relevant physical effects, see [8] ). As a result there
are many hundreds of parameters that have influence on the
Earth-Moon range time. Not surprisingly, there are
parameter-estimate degeneracies and LLR data alone can-
not determine all of these parameters. Therefore, LLR-only
analyses suffer from systematic uncertainties in model
parameter estimates, and the standard deviations (formal
errors) reported by the least-squares solution will under-
estimate the true model parameter-estimate uncertainties.
These systematic contributions to the uncertainties can
dominate the formal errors. If auxiliary solar system data
is included in the analysis (e.g., planetary radar ranging),
then the number of model parameters grows and new
parameter-estimate degeneracies arise. Having chosen to

TABLE III. The predicted sensitivity to each !sLLR parameter
(from [6] ) and the values derived in this work including the
realistic (scaled) uncertainties (F") with F # 20. In this analy-
sis, the PPN parameters were fixed at their GR values. The SME
parameters are all within 1.5 standard deviations of zero. We see
no evidence for Lorentz violation under the SME framework.

Parameter Predicted sensitivity This work

!s11–!s22 10$10 !1:3% 0:9" & 10$10

!s12 10$11 !6:9% 4:5" & 10$11

!s02 10$7 !$5:2% 4:8" & 10$7

!s01 10$7 !$0:8% 1:1" & 10$6

!s"'c 10$7 !0:2% 3:9" & 10$7

!s"'s 10$7 !$1:3% 4:1" & 10$7
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FIG. 3. The annual RMS residual between the LLR data and
our best-fit model for the lunar range. The residual RMS in 1969
is over 300 cm. We omitted this point from the plot for clarity,
but the two data points from that year were included in the
analysis. Over this time span, the potential Lorentz-violating
signals would all have undergone at least 34 cycles. As the
number and capability of LLR ranging stations change with time
so too does the LLR data rate and quality. For example, the sharp
improvement in the model-data agreement around 1995 is due to
the upgrade of the OCA station.

TABLE II. The partial derivatives of the SME perturbation to
the lunar range with respect to each !sLLR parameter.

SME parameter partial derivatives
@!r

@!!s11$!s22" # $
r0
12 cos!2!t( 2#"
$ !er0

16!!$!0" cos)!2!$!0"t( 2#*
@!r=@ !s12 # $ r0

6 sin!2!t( 2#"
$ !er0

8!!$!0" sin)!2!$!0"t( 2#*
@!r=@ !s02 # $ !!!m"v0r0

M!!$!0" cos!!t( #"
@!r=@ !s01 # !!!m"v0r0

M!!$!0" sin!!t( #"
@!r=@!s"'c # V'r0!b1

b2
" cos!"'t"

@!r=@!s"'s # V'r0!b1
b2
" sin!"'t"

PRL 99, 241103 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
14 DECEMBER 2007

241103-3• Impacts of SME on other space observations ? Cassini, Mars spacecraft, 
Messenger, ...   

Can these missions constrain efficiently SME parameters ?

10

2 J. Battat, J. Chandler, C. Stubbs, PRL, 99/241103, 2007 
   K. Chung, et al, PRD, 80/016002, 2009

1 Q. Bailey, V.A. Kostelecky, PRD, 74/045001, 2006



SME and asteroids
• Main advantage: decorrelation of the SME parameters

• Sensitivity on the 8 independent parameters

Tables

A. Hees

Bla

Table 1: Bla
SME Parameter sensitivity (�)

s̄XX � s̄Y Y 9⇥ 10�12

s̄XX + s̄Y Y � s̄ZZ 2⇥ 10�11

s̄XY 4⇥ 10�12

s̄XZ 2⇥ 10�12

s̄Y Z 4⇥ 10�12

s̄TX 1⇥ 10�8

s̄TY 2⇥ 10�8

s̄TZ 4⇥ 10�8

1

1 order of magnitude 
improvement wrt current 

constraints



SME and asteroids
• Main advantage: decorrelation of the SME parameters

• Sensitivity on the 8 independent parameters

Tables

A. Hees

Bla

Table 1: Bla
SME Parameter sensitivity (�)

s̄XX � s̄Y Y 9⇥ 10�12

s̄XX + s̄Y Y � s̄ZZ 2⇥ 10�11

s̄XY 4⇥ 10�12

s̄XZ 2⇥ 10�12

s̄Y Z 4⇥ 10�12

s̄TX 1⇥ 10�8

s̄TY 2⇥ 10�8

s̄TZ 4⇥ 10�8

1

1 order of magnitude 
improvement wrt current 

constraints

• Correlations between parameters

Tables

A. Hees

Bla

Table 1: Bla
SME Parameter sensitivity (�)

s̄XX � s̄Y Y 9⇥ 10�12

s̄XX + s̄Y Y � s̄ZZ 2⇥ 10�11

s̄XY 4⇥ 10�12

s̄XZ 2⇥ 10�12

s̄Y Z 4⇥ 10�12

s̄TX 1⇥ 10�8

s̄TY 2⇥ 10�8

s̄TZ 4⇥ 10�8

s̄XX � s̄Y Y s̄XX + s̄Y Y � s̄ZZ s̄XY s̄XZ s̄Y Z s̄TX s̄TY s̄TZ

s̄XX � s̄Y Y 1
s̄XX + s̄Y Y � s̄ZZ 0.28 1

s̄XY -0.06 -0.01 1
s̄XZ -0.17 -0.06 0.46 1
s̄Y Z -0.16 0.71 0.01 0.01 1
s̄TX 10�3 -0.01 -0.01 10�3 -0.01 1
s̄TY 0.03 0.09 0.01 -0.01 0.02 -0.16 1
s̄TZ -0.02 -0.1 -0.01 0.01 -0.02 0.13 -0.67 1

1

reasonnable correlations



SME and asteroids
• First possibility to decorrelate all parameters

• Analysis done including the Sun J2: similar results ; J2 decorrelates as well

• Improvement by ~ 1 order of magnitude wrt current constraints

• Need to extend the study to include “gravity-matter SME 
coupling” (more parameters that include violation of the equivalence 
principle)

Very promising results expected



Time variation of G
• A lot of alternative theories of gravitation induce a time variation of G 

(tensor-scalar theory for example)

• Constraining a linear variation in G is standard: 

• Sensitivity for GAIA: 10-12 per year

• Current constraint: 

Ġ/G

INPOP results from A. Fienga et al, arXiv:1409.4932, 2014

Ġ/G = (0.1± 1.6)⇥ 10�13yr�1

Ġ/G = (0.5± 1.6)⇥ 10�13yr�1

DE results from A. Konopliv et al, Icarus 211, 401, 2011



Periodic variation of G
• Very recent temporal analysis of G measurements seem to indicate a 

periodic variation 
 
 
  - first estimation by Anderson et al  
  - more careful analysis by Schlamminger et al

J. Anderson, et al, Eur. Phys. Letters 110, 10002, 2015

5

Identifier G× 1011 σG × 1011 Data acquisition e− s Device Mode
(

m3 kg−1 s−2
) (

m3 kg−1 s−2
)

Start End Average (Days)

NIST-82 6.672 6 0.000 5 08/29/1980 10/10/1980 09/19/1980 42 torsion balance time-of-swing

TR&D-96 6.672 9 0.000 5 04/19/1985 10/19/1995 06/09/1990 3835 torsion balance time-of-swing

LANL-97 6.674 0 0.000 7 01/01/1996 05/31/1996 03/15/1996 151 torsion balance time-of-swing

UW-00 6.674 255 0.000 092 03/10/2000 04/18/2000 03/29/2000 39 torsion balance acceleration servo

BIPM-01s 6.675 53 0.000 40 09/29/2000 11/02/2000 10/16/2000 34 torsion balance electrostatic servo

BIPM-01c 6.675 65 0.000 45 11/25/2000 12/13/2000 12/04/2000 18 torsion balance Cavendish

BIPM-01sc 6.675 59 0.000 27 09/29/2000 12/13/2000 11/02/2000 75 torsion balance Cavendish & servo

UWUP-02 6.674 22 0.000 98 01/12/2001 06/29/2001 03/06/2001 168 two pendulums

MSL-03 6.673 87 0.000 27 03/21/2002 11/01/2002 07/11/2002 225 torsion balance electrostatic servo

HUST-05 6.672 3 0.000 9 08/04/1997 10/15/1997 09/09/1997 72 torsion balance time-of-swing

UZH-06 6.674 25 0.000 12 07/31/2001 08/21/2001 08/21/2001 21 beam balance

HUST-09a 6.673 52 0.000 19 03/21/2007 05/20/2007 04/20/2007 60 torsion balance time-of-swing

HUST-09b 6.673 46 0.000 21 10/08/2008 11/16/2008 10/27/2008 39 torsion balance time-of-swing

JILA-10 6.672 34 0.000 14 05/12/2004 06/06/2004 05/28/2004 25 two pendulums

BIPM-13s 6.675 15 0.000 41 11/08/2007 01/16/2008 12/15/2007 69 torsion balance electrostatic servo

BIPM-13c 6.675 86 0.000 36 08/31/2007 09/10/2007 09/05/2007 10 torsion balance Cavendish

BIPM-13sc 6.675 54 0.000 16 08/31/2007 01/16/2008 10/25/2007 138 torsion balance Cavendish & servo

UCI-14a 6.674 35 0.000 10 10/04/2000 11/11/2000 10/23/2000 38 torsion balance time-of-swing

UCI-14b 6.674 08 0.000 15 03/25/2002 05/12/2002 04/18/2002 48 torsion balance time-of-swing

UCI-14c 6.674 55 0.000 13 04/08/2006 05/14/2006 04/26/2006 36 torsion balance time-of-swing

LENS-14 6.671 91 0.000 99 07/05/2013 07/12/2013 07/08/2013 7 atom interferometer

TABLE II. Summary of the most precise measurements of G carried out in the last 35 years. The “Start” and “End” columns
indicate our best estimate of the dates when data acquisition began and ended. The “Average” column shows our best
estimate for the mean date of data acquisition. The “e − s” column gives the difference in days between end and start of
data acquisition, important in estimating the amount by which a short-period signal is attenuated. We suggest 20% of the
e − s duration number as a meaningful estimate of date uncertainty. We separate the two BIPM measurements into four
measurements to emphasize that two different methods were used, and include data labeled BIPM-01sc and BIPM-13sc for
the best G and dates combining the two methods. Particularly for the 2013 BIPM data, results with the separate methods
had strongly anti-correlated uncertainties, so that a G(t) fit using the combined G value can give a significantly different result
from a fit treating results from the two methods separately. The BIPM data points in Figure 1 represent the combined G data
BIPM-01sc and BIPM-13sc.

Fit function T A× 1015 Ḡ× 1011 Maximum χ2
f NDF P (χ2 ≥ χ2

f ) Remarks

(years)
(

m3 kg−1 s−2
) (

m3 kg−1 s−2
)

from Fig. 1 in [1] 5.93 16.1 6.673 88 09/13/01 381 14 10−72

sine, fixed T 5.93 10.7 6.673 59 03/14/01 132 14 10−21

sine, T free 0.77 11.2 6.673 58 02/21/00 77 13 10−11 global χ2 minimum

sine, T free 6.17 11.0 6.673 54 02/13/01 124 13 10−19 local χ2 minimum

straight line n.a. n.a. 6.674 13 n.a. 335 16 10−61

TABLE III. Fits to the G data. Here the L2-norm is used exclusively. The “Maximum” column gives the date of the first
maximum after 01/01/2000. The “NDF” column shows fits degrees of freedom.

2. A sinusoidal function with free amplitude and
phase but period fixed at 5.9 years.

3. A sinusoidal function with free amplitude, phase
and period.

4. A single time-independent parameter, Ḡ.

Results of these fits are presented in Table III. These
fits ignored uncertainties in date. Including uncertainties

in both coordinates did not significantly affect fit results.

Figure 3 displays goodness of fit using two different
norms for sinusoidal fits as T is varied. The upper and
lower graph show fits obtained by minimizing the sum
of the absolute residual (L1-norm),

∑

i
|ri|, and the sum

of the squared residual (L2-norm),
∑

i
r2i , respectively.

Here, ri is the residual of the i’th data point, given
by ri =

(

Gi − Ḡ− C cos (2πti/T )− S sin (2πti/T )
)

/σi,
where Gi and σi is the measurement and its uncertainty

G(t) = Ḡ+A sin

✓
2⇡

t� t0
T

◆

S. Schlamminger et al, arXiv:1505.01774, 2015

• Gaia sensitivity around ~ 10-20 for the amplitude, no correlation with 
Sun J2.

• Planetary ephemerides can be used to constrain severely this effect
L. Iorio, arXiv:1504.07233, 2015



Conclusion
• Testing GR in the solar system is very challenging but very important:  

    - search for small deviations (smaller than present PPN accuracy)  
    - search for deviations in extended frameworks (SME is one of them)

• Asteroids observations with GAIA offer nice opportunities to probe 
orbital dynamics 
  - large number of orbital parameters: nice to deal with correlations  
  - different and independent constraints from planetary ephemerides

• Sensitivity assessed for different alternative gravity framework: PPN 
parameters, fifth force, SME, variation of G, …

• In the longer term, combining GAIA observations with UCLA radar 
data may improve the results: complementary observations — 
currently under investigation see J.L. Margot and J. Giorgini, proceedings of IAU symp. 261, 2010



BACK UP SLIDES



Basic principles of GR
1) Equivalence Principle: the future…

- theoretical motivations to improve these: string theory, Kaluza-Klein, 
theories with variable fundamental constants (“principle of absence 
of absolute structure”),  “anthropic principle”, ...

for a review, see T. Damour, CQG, 29-184001, 2012

• Universality of Free Fall:  
- Microscope: launch in April 2016; test at 10-15  
- Galileo Galilei: Italian proposal; test at 10-17  
- STE-QUEST: ESA proposal; quantum test at the level of 10-15

see G. Metris’s talk

• Local Position Invariance - gravitational redshift:  
- ACES: launch in 2016; test at 10-6  
- Galileo 5 and 6 GNSS satellites: failed launched eccentric orbit 
appropriate for redshift tests (comparison of onboard clocks to clocks 
on Earth). Full sensitivity study (stochastic noise and systematics): 
sensitivity at 2x10-5 with one year of data 

see Delva P., Hees A., et al, proceedings of Moriond 2015 and coming publication


