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Introduction

The J0337+1755 system

Publication of the discovery of J0337+1755 by Ransom et al.
(2014)

Direction of ascending node

Earth Earth

i

Barycenter

Figure : Sketch of the orbits. The neutron star is the smallest of the bodies but the heaviest so has a

smaller amplitude of motion. Together with the closest (red) white dwarf they form the inner system. To

a good approximation this one can be considered as a body orbiting the outer (green) white dwarf to

form the outer system.1
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Introduction

The J0337+1755 system

Some characteristics (from Ransom et al. (2014)) :

I Spin period : 2.7 ms ; Magnetic �eld : 108Gauss

I Masses : 1.43M� (pulsar), 0.2M� (inner WD), and 0.4M�
(outer WD).

I Periods : 1.6 days (inner system), 327 days (outer system)

I Eccentricities : 7 · 10−4 (inner), 3 · 10−2 (outer)

I Semi-major axes for the pulsar : 1.9 ls (inner), 118 ls (outer)

I Inclination on the sky : 39◦
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Pulsar timing

Nançay

Stacking

Folding using a 
pulsar timing model 

Raw signal 

Figure : Principle of pulsar timing
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Introduction

Pulsar timing

Figure : Residuals of the BTX model applied to the last-to-date Nançay
data, that is the di�erence between the time of arrivals (TOAs) predicted
by the model and the measured times.
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Timing model

I In the proper frame of the pulsar, the timing model is simple :

N(τ) = N(τ0) + f (τ0)(τ − τ0) +
1

2

df

dτ
(τ0)(τ − τ0)2 (1)

τ : proper time.

I But in the Solar-system-barycenter frame, delays come in :

N(ta) = N(t0) + f (t0)(ta −∆t︸ ︷︷ ︸
τ

−τ0) +
1

2

df

dt
(t0)(ta−∆t− τ0)2

(2)
ta : time of arrival in the Solar-system barycenter.
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Timing model

Their are numerous delays :

I Rømer delay : geometrical delay due to the propagation of light

I Einstein delay : time dilation due to speed and/or gravitational
�elds.

I Shapiro delay : light bending and slowing down due to
companions.

I Tidal delays : due to tidal interactions

I ...
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A timing model for J0337

The timing model that was
developed
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A timing model for J0337

The 3-body motion

The 3-body Newtonian motion was adressed :

I

k
d ~QI

du
= Q̇I (3)

k
d ~̇QI

du
= −MJ

~QI − ~QJ

‖QI − QJ‖3
−MK

~QI − ~QK

‖QI − QK‖3
(4)

and circular permutations of {I , J,K}.

I Numerical treatment using a Bulirsch-Stoer scheme

I Not periodic as expected from Bertrand's theorem.
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A timing model for J0337

Rømer delay

The Rømer delay is the variation of distance between the observer
and the pulsar when it orbits one or several companions

Barycenter (I)

Companion

Pulsar (P)

Observer (O)

∆R(te) ' ~n · ~IP/c
~n

te : time of emission in the frame of the observer
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A timing model for J0337

Rømer delay

Figure : Rømer delay with second order correction.The large scale curve is mostly due to the

presence of the outer companion while the inset shows the modulation due to the inner system.
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A timing model for J0337

Einstein and Shapiro delay

The Einstein delay is variation of time dilation due to speed and
companion gravitational potential variations.

Observer (O)
~vP

Pulsar (P)

Outer companion

Inner companion

Ωproper

The Shapiro delay is due to the gravitational potential along the
light path.

11



Triple system J0337+1755

A timing model for J0337

Einstein and Shapiro delay

c)

a) b)

c)

Figure : a) Einstein delay for the parameters drawn from 8-month data (green dots) of J0337 at

Nançay, b) Component due to the outer white dwarf during the same time as in a), c) Zoom on the

component due to the coupling between the outer and inner speeds. The pseudo-period is that of the

inner orbit, about 1.6 days.
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A timing model for J0337

Einstein and Shapiro delay
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Figure : Shapiro delay for the parameters drawn from 14-month data
(green dots) of J0337 at Nançay.
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A timing model for J0337

Tidal e�ects

Tidal e�ects can directly a�ect the spin frequency of the pulsar.

a) Quadrupolar deformation

b) Torque from companion

I a) Angular momentum must be conserved.

L = Iω ⇒ δω = −ωδI/I

I b) The neutron matter is too sti� (Thorne, 1998).
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Fitting to data from the Nançay radio-telescope

Let's �t to data !
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Fitting to data from the Nançay radio-telescope

Finding the best solution with Minuit

I Minuit is a variable-metric minimizer developed at CERN,
suited for many-variable problems.

I We want to �nd the parameters {θk} giving the maximum
likelihood for our timing model N(ti , {θk}) and turn numbers
Ni of uncertainty σi :

p(D|{θk}) =
∏
i

1

f
exp

(N(ti , {θk})− Ni ))2

2σ2i
(5)

I Such a �t is not straightforward ! Two tricks were used :
I Comparison with fake pulsars.
I Tracking of Minuit steps.
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Fitting to data from the Nançay radio-telescope

Finding the best solution with Minuit
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Figure : Best timing residuals obtained so far including Rømer, Einstein
and Shapiro delays. It includes 11741 TOAs from Nançay spaning over
670 days.
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Fitting to data from the Nançay radio-telescope

Estimating errors

I We need to compute the errors on each parameters. We
shall use a Bayesian approach :

I It is generally impossible to compute p({θk}|D). But a
Markov-Chain-Monte-Carlo (MCMC) algorithm can draw a
sample from this density :

I Slow but can be parallelized
I Convergence ensured by the fundamental theorem of Markov

chains (Diaconis, 2009).
I Use of an a�ne invariant (Goodman and Weare, 2010), more

robust, algorithm by Foreman-Mackey et al. (2013).
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Fitting to data from the Nançay radio-telescope

Estimating errors
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Figure : Statistical distribution of the inner and outer eccentricities as well as their correlation plot.

We can see that this last plot is roughly isotropic, and so that the statistical correlation is low, which is

the case for all outer parameters with respect to inner parameters, as one might expect. The blue lines

show where the �tted value with Minuit is.
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Strong equivalence principle test

Strong equivalence principle test
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Strong equivalence principle test

I Goal : performing a LLR-type experiment on this system !
(Collaboration with P. Freire, N. Wex and M. Kramer
(Max-Planck-Institut Für Radioastronomie, Bonn) )

I Best tests to date are with pulsar-WD systems :
I Polarizing �eld : Sun 6 · 10−3m · s−2 versus Galaxy

2 · 10−3m · s−2

I Measurement accuracy : 1cm for the Earth-Moon system
versus 10m for a pulsar-WD system.

I εgrav = Egrav/MI c
2 is −5 · 10−10 for Earth versus −0.15 for a

neutron star.

I With the triple system : replace the potential of the galaxy by
the potential of the outer white dwarf : 0.02m · s−2 ! !
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Conclusion
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Conclusion

To conclude :

I A model implementing a full integration of the 3-body
Newtonian motion as well as Romer, Einstein and Shapiro
delays improves the accuracy by almost two orders of
magnitude.

I Tidal e�ects were investigated and showed no signi�cant
contributions.

I The model is not yet complete : Post-Newtonian equations of
motion are being implemented.

I Currently starting a collaboration with P. Freire, N. Wex and
M. Kramer (Max-Planck-Institut Für Radioastronomie, Bonn)
to implement a test of the strong equivalence principle.
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Conclusion

f (s−1) 365.95332+1.4
−2.2 eI 6.9569952+2.7

−3.2 · 10−4 eO 3.53150+1.3
−1.2 · 10−2

f
′ (s−2) −4.443+0.73

−1.1 · 10−14 ap (ls) 1.2178+2.5
−3.4 aI (ls) 74.677+5.1

−5.0
Mp (M�) 1.4325+6.1

−4.7 Ωp (rad) 1.6447+6.7
−8.4 ΩI (rad) 1.6708+4.1

−3.5
µip 1.0000+1.4

−1.9 TI (MJD) 55917.5+2.0
−7.2 TO (MJD) 56317.21+3.3

−2.6
µIo 1.00000+2.6

−2.9 PI (days) 1.6294+4.9
−5.7 PO (days) 327.26+2.0

2.0

iI (rad) 1.5483+9.6
−7.2 iO (rad) 1.5709+5.5

−7.9

Table : This table shows the best �tted parameters for the 3063 �rst
TOAs from the Nançay decimetric telescope, for the system
J0337+1755, with their error bars. The errors are given for the last digit
at a 90% con�dence level. (ls stands for light-second)
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Parametrization

Parametrization of the outer orbit : Intrinsic parameters :
eO ao ΩO TO PO iO f f ′ Mp µip µIo

Direction of ascending node

Earth Earth

iO

ΩO

Direction of outer periastron

TO

ao
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Parametrization

I In the Newtonian limit, the variation of the moment of inertia
with respect to the spin axis is related to the quadrupolar
moment δQxx of the star along the NS-Companion axis x :

δI = −3
2
δQxx (7)

I And δQij to the gravitational-�eld-gradient tensor Eij through
the so-called tidal polarizability λ (Hinderer (2008) and
Fattoyev et al. (2013)) :

δQij = −λEij (8)

I The e�ect is negligible :

δω ' −3.5 · 10−15Hz (9)
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The issue of numerical round-o� errors

A word about numerical round-o� errors :

I Data are made of a set of dates, given in Modi�ed Julian Days
(MJD).

I Use of 80-bit representation when necessary + systematic
check of round-o� errors.

I 1µs ∼ 300m
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But only the time of arrival ta is known :

∆R(te) = ∆R(ta) (11)

−∆R(ta)∆′R |ta

+

[
∆R(ta)∆′R |2ta +

1

2
∆R(ta)2∆′′R |ta

]
+ ◦

(
∆R

T

)2

Where ∆R . 100 s and T & 1 day.
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Number of parameters :
The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(12)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :
3× 6 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6+3 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3+2 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3 + 2−3 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3 + 2− 3−3 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3 + 2− 3− 3 = 17 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3 + 2− 3− 3 = 17 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3 + 2− 3− 3 = 17 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3 + 2− 3− 3 = 17 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30



Triple system J0337+1755

The issue of numerical round-o� errors

Number of parameters :

3× 6 + 3 + 2− 3− 3 = 17 (12)

The intrinsic parameters µip and µIo :

I

µip =
m3

i

4π2a3
i

GP2
I

(mi + mp)2
(13)

I With two bodies µip = 1 : this is Kepler's third law (or mass
function).

I With three bodies, µip and µIo are freed because the system is
no longer coplanar.

30


	Introduction
	The J0337+1755 system
	Pulsar timing
	Timing model

	A timing model for J0337
	The 3-body motion
	Rømer delay
	Einstein and Shapiro delay
	Tidal effects

	Fitting to data from the Nançay radio-telescope
	Finding the best solution with Minuit
	Estimating errors

	Strong equivalence principle test
	Conclusion
	Annexe
	Parametrization
	The issue of numerical round-off errors



