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How to measure a distance of
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diameter? The detection of
gravitational waves
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General Relativity & Gravitational Waves

- 1915: General Relativity -> dynamic space-time
gravity = space-time curvature

- 1916: Gravitational Waves -> ripples in space-time propagating at the
speed of light
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Gravitational Waves Observations

September 14,2015  October 12, 2015 December 26, 2015
CONFIRMED CANDIDATE CONFIRMED

LvT151012 6GW151226
MgHi = 23 Mo g— Meui = 14 Mo
MeHz = 13 Mo Rd MeHz = 8 Mo
MeeH = 35 Mo MreH = 21 Mg
SNR = 9.7 SNR = 13

6W150914
MeH1 = 36 Mo
MeHz = 29 Mo
MreH = 62 Mo
SNR = 24
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The events begin to reveal a population of
stellar mass black hole mergers




How to measure Gravitational Waves?

Gravitational Waves on Earth modify distances: stretch space in one
direction and compress space in the other direction.
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This deformation is TINY:

d = 10 m = 0.000000000000000001 m

1018 m

How to measure this tiny deformation? ;



How to measure Gravitational Waves?

The Michelson Interferometer detects differential effects in arms.

Mirror

Dark Fringe: destructive
field recombination.

Sl miror  Bright Fringe: constructive
field recombination.

Beam

Splitter
GW passage changes the
Photodiode working point.
Dark Bright

Fringe Fringe



Gravitational Waves & Michelson Interferometer
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Gravitational Waves & Michelson Interferometer
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How to measure d = 1018 m = A / 1012?
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LIGO & Virgo Interferometers
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Mirrors fluctuations induced

by many phenomena :

- motion of the Earth ->
seismic noise

- molecules thermal motion ->
thermal noise

- light quantum nature ->
quantum noise

- laser instability ->
frequency noise

- mirror defects ->
scattered light noise

- environmental conditions ->
environmental noise
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LIGO & Virgo Interferometers

At Virgo site Seismic noise is ~ 107 m @ 10 Hz. It must be
attenuated: mirrors are suspended -> attenuation > 10'° @ 10 Hz.

Standard filters

Filter 7

Virgo (Passive) Suspension System 12



LIGO & Virgo Interferometers

Thermal Noise: suspension wires (losses) and mirrors
coating (losses & roughness).

Suspensions: silica wires used to .
create a monolithic structure Mirrors: SU'”fC‘C@.defZCTS ~ 0.5 :\n
between suspension and mirror over d = 35 cm with losses ~ 10°
(losses ~ 107). (coating made by LMA Lyon)
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LIGO & Virgo Interferometers

Two components of quantum noise: shot noise (at high frequency) and
radiation pressure noise (at low frequency).

Shot noise: fluctuation oh photon number impinging on the photodetector
o< 1/ Pin. SN~ 10%° m for Pi, = 100 W -> high power laser.

Radiation pressure noise: motion induced by photons impacting on the
mirrors o< 1/ m -> heavy mirrors.

Laser beam: P ~ 200 W Heavy Mirrors: m = 40 kg
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LIGO & Virgo Interferometers

Frequency noise of a top class commercial laser ~ 10*/f Hz/J/Hz @ 1 Hz.
Frequency noise needed in GW detector ~ 10° Hz/J/Hz @ 10 - 10k Hz.

Frequency stabilized using auxiliary cavities and the Interferometer.

Laser bench Laser amplifier
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LIGO & Virgo Interferometers

Scattered light: difficult to estimate but always present -> one of the
major risk fowards the final sensitivity.

Mitigation strategy: improve the quality of the optics; baffle to shield
mirrors, fowers, pipes; photodiodes suspended in vacuum; control of the
position of the photodiodes benches with respect to the interferometer.

astance from mimoe canter [mm)

Scattered light Mirror Tower Photodiode Bench

around the mirror baffle baffle suspension
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LIGO & Virgo Interferometers

To stabilize the environmental conditions -> The core of the

Virgo (Italy)



LIGO & Virgo Interferometers
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LIGO & Virgo Interferometers
_I:IGO Hanford (WA) _ LIGO Livingston (LA)
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LIGO & Virgo Interferometers

Once the interferometer is built, the commissioning work can start.

L1l Strain Sensitivity changes over time
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How can we be sure to have measured a GW?

The status of the interferometer is monitored and analyzed during

the data taking.

- sensors are installed everywhere around the interferometer;

- more than 200000 auxiliary channels recorded to monitor the
detector behavior and the environmental conditions.
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How can we be sure to have measures a GW?

VETO Method: find time coincidence between glitches in GW signal
and in auxiliary channels to erase corrupted data.

peak time

Time coincidence between
the two interferometers
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Conclusions

On September 14th 2015 the two LIGO detectors observed for
the first time a transient gravitational wave signal. On December
261h 2015 a second BH-BH coalescence has been observed by the
two LIGO detectors.

A gravitational wave induces a tiny deformation.

Michelson Interferometer is the most appropriate instrument to
measure such deformation.

BUT d = 108 m challenging to be measured: many “tricks" used to
improve the sensitivity of the Interferometer.

Careful detector characterization made to consider only clean
data in the search for gravitational waves.
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