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Ground & space geodesy accuracy is increasing:

Navigation of interplanetary probes :

From cm to mmLLR & SLR
GALILEO

factor 80 on Grav. RedshiftGravity Probe A to ACES/Pharao

Ground & space astrometry:
from milli to micro-arcsecondGaia, Gravity

factor 10 on Doppler
Cassini Experiment, use of Ka Band
MORE Experiment on BepiColombo
JUNO Experiment 2016, JUICE towards 2030

Need to describe light propagation/dynamic more 
precisely in relativistic framework : go to 2PN theory !

(see Kopeikin, Klioner, Soffel, CLPL, Teyssandier & Hees works)

• One can catch more relativistic effects
• But we can also study alternative theory => SME !

More and more precision !



• SME: consider violations of the Lorentz symmetry (coming from more 

fundamental theory) in all sectors of physics

• metric parametrizing a violation of Lorentz symmetry in the gravitational 

sector depends on           : does not enter PPN of fifth force formalisms

• currently a few analysis (Gravity probe B, binary pulsars, LLR postfit 

analysis)

see Q. Bailey, V.A. Kostelecky, PRD, 2006
V.A. Kostelecky, J. Tasson, PRD, 2011

• matter sector leads to violations of the EEP (in terms of the so-called
coefficients).  Go to gravity-matter coupling ?

Can Solar System observations constrain Lorentz symmetry violation ?

Lorentz symmetry violation : SME

s̄µ⌫



SME Post-fit analysis of experiments
Several papers on Lunar Laser Ranging, Gravity
Probe B and binary pulsars :

Up to now :
• NO constraint on gravitational sector of SME
• but ONLY Upper Limit

But can we speak about Constraints ?

performs a weighted, linear least-squares analysis to cal-
culate adjustments to the model parameters in order to
minimize the difference between the observations and the
model.

If one is concerned about nonlinearities, one can solve
for model parameters and then reintegrate the equations of
motion, iterating until the parameter estimates converge.
Over the past several decades the traditional (i.e., non-
SME) analyses have done just that, resulting in agreement
between model and data at the few centimeter level.
Current model parameter values are therefore highly re-
fined, and the weighted least-squares analysis sits firmly in
the linear regime. As a result, it is not necessary to iterate
when estimating new model parameters. Because the lunar
range model is linear in the !sLLR parameters [see Eq. (1)
and Table I], the inclusion of these parameters in the
analysis preserves linearity, as confirmed by the small
adjustments to non-SME parameters seen in our solutions.
Performing an iterative solution for SME parameters re-
quires the inclusion of the SME terms in the equations of
motion, which has not yet been done.

We computed the partial derivatives of lunar range with
respect to each !sLLR parameter (see Table II) and provided
this information to PEP prior to solving for the best-fit
parameter adjustments. This approach is equivalent to ex-
plicitly including the !sLLR parameters in the equations of
motion and setting their a priori values to zero [in which
case !rSME!t" # 0 so there is no SME contribution to the
lunar orbit]. We therefore treated any Lorentz violation as a

small perturbation to a known orbit. The terms in the
covariance matrix quantify ‘‘cross-talk’’ between SME
parameters and other fitted quantities.

The solar system is complex. When modeling the ex-
pected light travel time between an LLR station on the
Earth and a reflector on the lunar surface, one must account
not only for the gravitational perturbations from the eight
planets and Pluto, but also those of asteroids, asphericities
in the Sun, Earth, and Moon, as well as various relativistic
and nongravitational effects (for a more complete descrip-
tion of relevant physical effects, see [8] ). As a result there
are many hundreds of parameters that have influence on the
Earth-Moon range time. Not surprisingly, there are
parameter-estimate degeneracies and LLR data alone can-
not determine all of these parameters. Therefore, LLR-only
analyses suffer from systematic uncertainties in model
parameter estimates, and the standard deviations (formal
errors) reported by the least-squares solution will under-
estimate the true model parameter-estimate uncertainties.
These systematic contributions to the uncertainties can
dominate the formal errors. If auxiliary solar system data
is included in the analysis (e.g., planetary radar ranging),
then the number of model parameters grows and new
parameter-estimate degeneracies arise. Having chosen to

TABLE III. The predicted sensitivity to each !sLLR parameter
(from [6] ) and the values derived in this work including the
realistic (scaled) uncertainties (F") with F # 20. In this analy-
sis, the PPN parameters were fixed at their GR values. The SME
parameters are all within 1.5 standard deviations of zero. We see
no evidence for Lorentz violation under the SME framework.

Parameter Predicted sensitivity This work

!s11–!s22 10$10 !1:3% 0:9" & 10$10

!s12 10$11 !6:9% 4:5" & 10$11

!s02 10$7 !$5:2% 4:8" & 10$7

!s01 10$7 !$0:8% 1:1" & 10$6

!s"'c 10$7 !0:2% 3:9" & 10$7

!s"'s 10$7 !$1:3% 4:1" & 10$7
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FIG. 3. The annual RMS residual between the LLR data and
our best-fit model for the lunar range. The residual RMS in 1969
is over 300 cm. We omitted this point from the plot for clarity,
but the two data points from that year were included in the
analysis. Over this time span, the potential Lorentz-violating
signals would all have undergone at least 34 cycles. As the
number and capability of LLR ranging stations change with time
so too does the LLR data rate and quality. For example, the sharp
improvement in the model-data agreement around 1995 is due to
the upgrade of the OCA station.

TABLE II. The partial derivatives of the SME perturbation to
the lunar range with respect to each !sLLR parameter.

SME parameter partial derivatives
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!
dl
dt

"
¼ nbFeð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
s̄bcâ − s̄acb̂þ e2Fes̄abĉÞ

þ 2δXVOnbeFeðs̄0câ − s̄0aĉÞ; (3)

where ω
:
R is the periastron advance rate, nb ≡ 2π=Pb is the

orbital frequency, VO ≡ ½Gðm1 þm2Þnb&1=3 is the charac-
teristic orbital velocity, and δX ≡ ðm1 −m2Þ=ðm1 þm2Þ
denotes the difference of the pulsar mass m1 and the
companion mass m2. The function Fe ≡ 1=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ

only depends on the eccentricity e, and Fe ∈ ½1=2; 1Þ for a
bound orbit.
In pulsar timing, in principle, one can construct three

tests per binary to constrain LV effects, by utilizing ω
:
, e

:
,

and x
:
(x is the projected semimajor axis of pulsar orbit)

[13,26]. Through a direct check, one can show that they are
insensitive to s̄TT as well.
Simulations and results.—Thirteen pulsars are chosen

for tests, including profile observations of two solitary
millisecond pulsars, PSRs B1937þ 21 and J1744 − 1134
[28], that provide one test per pulsar, and timing observa-
tions of 11 binaries, PSRs B1913þ 16 [32], B1534þ 12
[33], J0737 − 3039A[34], B2127þ 11C [35], J1738þ
0333 [36], J1012þ 5307 [37], J0348þ 0432 [38],
J1802 − 2124 [39], J0437 − 4715 [40], B1855þ 09, and
J1909 − 3744 [41], that provide two or three tests per
system. In total, we constructed 27 tests [26].
Specifically, the null detection of any change in the

morphology of the pulse profiles of two solitary pulsars,
after being monitored for more than one decade [28],
tightly constrains the LV spin precession. For binary
pulsars, we use the published timing solutions of the
successful phase-coherent fittings to times of arrival of
pulse signals with generic timing models [32–41]. The
observations extend from several years to decades. The null
detection of any beyond-GR effects in binary pulsars
constrains LV orbital dynamics. All these pulsar systems
were studied in great detail in their original publications,
and relevant results are reviewed and discussed in Ref. [26].
We made the following considerations in our calculation.

(i) Because x
:
and e

:
were usually not reported in literature,

we conservatively estimate 68% C.L. upper limits for them
from uncertainties of e and x, as je: jupper ¼

ffiffiffiffiffi
12

p
σe=Tobs and

jx: jupper ¼
ffiffiffiffiffi
12

p
σx=Tobs [26], where Tobs is the time span

used in deriving the timing solution, in accordance with the
case of linear-in-time evolution. The estimation is consis-
tent with the values reported in Ref. [33] for PSR
B1534þ 12. We also account for the contribution to x

:

from proper motion [42]. (ii) For consistency, the ω
:

test is possible only if component masses are measured
to a high precision independent of gravity theories. Such
mass measurements are possible only with a few small-
eccentricity binary pulsars with optical observations of
companions [36–38]. Because these binaries have no ω

:

measurements yet, we use the limits on time variations of
the eccentricity vector in tests with an ω

:
calculated from

GR, similar to the method proposed in Ref. [31]. We do not
use ω

:
in tests for pulsars whose masses were based on GR.

In contrast, e
:
and x

:
tests are still feasible with them because

in GR, the changes in x and e introduced by gravitational
damping are negligible [29]; hence, only modest knowl-
edge on component masses is sufficient. (iii) One caution in
directly using Eqs. (2) and (3) was pointed out in Ref. [43]
that a large ω

:
can render the secular changes nonconstant.

These effects cannot be too large based on the fact that
all binaries were well fitted with simple timing models.
The largest change in ω is ∼100° for PSR B1913þ 16 in
our samples. Therefore, we consider it safe to use time-
averaged values for ω-related quantities as a rough approxi-
mation at the current stage. (iv) The geometry of the above
pulsar systems is not fully determined from observations.
For binary pulsars, the longitude of ascending node Ω is
generally not an observable in pulsar timing, while for
solitary pulsars, the azimuthal angle of the spin η is
unknown. We have to treat them as random variables
uniformly distributed in [0°, 360°). This choice makes our
tests probabilistic tests.
We set up Monte Carlo simulations to treat unknown

angles and measurement uncertainties. First, we make lots
of trials to identify the eight most stringent tests. Linear
equations for LV coefficients are constructed from them.
The equation set is solved to obtain eight combinations of
LV coefficients. Afterwards, we check whether these values
are also consistent with the other 19 tests. If all tests are
passed, values are stored. We accumulate 104 entries and
read out the 68% C.L.s for LV coefficients. Results are
tabulated in Table I, where a comparison with that from the
combination of lunar laser ranging and atom interferometry
[24] is made. The improvement factor K is defined to be
the (inverse) ratio of the length of 68% C.L.s. In Fig. 3, 103

entries out of our results are plotted. The absence of
obvious correlations between different coefficients benefits
from multiple pulsars which make it unlikely for a specific
combination of large LV coefficients to pass all tests.

TABLE I. Pulsar constraints on the coefficients of the pure-
gravity sector of mSME [13]. The K factor reflects the improve-
ment over the combined limits from lunar laser ranging and atom
interferometry [24]. Notice the probabilistic assumption made in
the text.

SME coefficients 68% confidence level K factor

s̄TX ð−5.2; 5.3Þ × 10−9 118
s̄TY ð−7.5; 8.5Þ × 10−9 163
s̄TZ ð−5.9; 5.8Þ × 10−9 650
s̄XY ð−3.5; 3.6Þ × 10−11 42
s̄XZ ð−2.0; 2.0Þ × 10−11 70
s̄YZ ð−3.3; 3.3Þ × 10−11 42
s̄XX − s̄YY ð−9.7; 10.1Þ × 10−11 16
s̄XX þ s̄YY − 2s̄ZZ ð−12.3; 12.2Þ × 10−11 310
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s̄μν ≃

0

BBB@

s̄TT 0 0 0
0 1

3 s̄
TT 0 0

0 0 1
3 s̄

TT 0
0 0 0 1

3 s̄
TT

1

CCCA: ð37Þ

By writing down the above numerical expression with
possibly dominant nonzero components from purely empir-
ical evidence [26,60–62], we are free of assuming the
existence of a PF. The calculation to constrain such an s̄μν is
straightforward with the analysis in this paper. With
Monte Carlo simulations properly accounting for all
measurement uncertainties, we found that the best robust
limit of s̄TT still comes from PSR J1738þ 0333, which
gives

js̄TTj < 2.8 × 10−4 ð95% C:L:Þ: ð38Þ

It is weaker than the limit with the isotropic frame
of CMB as the PF, due to the fact that the boost between
PSR J1738+0333 and the Solar System is only about
jvj ¼ 74.8% 9.5 km s−1. The systematic velocity is related
to the evolutionary history of NS-WD systems [40].
Nevertheless, this limit, free of the assumption that there
exists a PF, is still 1 order of magnitude better than the
current best limit.

VI. SUMMARY

In this paper, we propose a new idea to test the s̄TT

component in the pure-gravity sector of mSME by utilizing
the boost between different frames. A new robust limit, in
the standard Sun-centered equatorial-celestial coordinate
frame, is obtained from PSR J1738þ 0333,

js̄TTj < 1.6 × 10−5 ð95% C:L:Þ; ð39Þ

when the isotropic CMB frame is assumed to be the PF. The
limit is about 500 times better than the current best limit
from Gravity Probe B [25].
The idea of mixing different components in the

condensed (cosmic or even local) tensor fields with a
full Lorentz transformation is also applicable in other
sectors of SME with careful studies, as demonstrated in
Refs. [63–65]. Although such a boost is usually quite small
[e.g., Oð10−3Þ for binary pulsars], with some astrophysical
systems, the method could become useful with precision
experiments, as done here with the state-of-the-art pulsar
timing experiments.
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Not really, we are speaking about post-fit
analysis. Exception : Battat et al. 2007, but the
dynamical modeling is far from reality and
finally is not adequat. We are missing several
key points : data time span analysis, correlation
with others parameters, modeling & fit in GR
and then another fit in the residuals…

22

Figure 4. Lunar laser ranging measurement residuals.
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Table 3. Observational data for Uranus, Neptune, and Pluto. The columns contain the observatory/source,  
the time coverage, and the number of observations. 

Planet Class Type

 Uranus 

  Spacecraft 3–D Voyager 2 1986 1  

  Astrometric CCD  Flagstaff   1995–2012 3892 

    Table Mountain   1998–2009 645  

    Nikolaev   1961–1998 430    

  Astrometric Relative Yerkes   1908–1922 21  

  Astrometric Transit Bordeaux   1985–1993 238 

    La Palma   1984–1997 1030  

    Washington   1926–1993 2043  

 Neptune  

  Spacecraft 3–D Voyager 2   1989 1  

  Astrometric CCD  Flagstaff  1995–2012 4259  

    Table Mountain   1999–2012 832  

    Nikolaev   1961–1998 436    

  Astrometric Relative  Yerkes   1904–1922 33  

  Astrometric Transit Bordeaux   1985–1993 183  

    La Palma   1984–1998 1106  

    Washington   1926–1993 1838  

 Pluto           

  Astrometric CCD  Flagstaff   1995–2012 995  

    Table Mountain   2001–2012 365  

    Pico dos Dias   1995–2012 5489  

  Astrometric  Photographic Pulkovo   1930–1992 53  

  Occultation  Various   2005–2012 19

Observatory/Spacecraft Span Number

JPL DE430 Moon rms
Folkner et al. 2014

Over-estimation of SME coefficients !

Pre-Process data, dynamical modeling
& fit in a complete SME framework

In 3 words : Our Ultimate Goal !



Today Menu
Appetizers

Post-fit analysis with planetary ephemerides
&

Simulations for Solar System Objects with Gaia data 

Main dishes

Constraint with Very Long Baseline Interferometry

Desserts

Constraint with Lunar Laser Ranging



• Use of observations to fit orbital dynamics: optical, radar, VLBI, 
spacecraft tracking (~ 800 000 observations)

• influence of SME on orbital dynamics studied in Q. Bailey, V.A. Kostelecky, PRD, 2006

• Post-fit Bayesian analysis with INPOP10a (room for improvement 
by integrating directly the eq. of motion)

• difficulty: strong correlations. Reason: similar orbital plane and 
eccentricity

INPOP10a: A. Fienga, et al, Cel. Mec. Dyn. Astr, 2011

Planetary ephemerides and Lorentz symmetry
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SME Upper limits from planetary ephemerides

• combined analysis: 
- atom interferometry
- LLR
=> possible to decorrelate all gravity AND 
matter/gravity coefficients

see H Muller, et al, PRL, 08

see J. battat, et al, PRL 07

s̄BAI¼ s̄YZ−1.12×10−5s̄TX

þ5.43×10−6αðāeþp
eff ÞXþ5.96×10−6αðāneffÞX; ð23bÞ

with ðāeþp
eff ÞJ given by Eq. (6).

Therefore, the experiment from [20,21] is sensitive to the
last two combinations and not to s̄XZ and s̄YZ alone. The
results from [21] are presented in Table VII.
In our final analysis, we combine the three analysis with

both the s̄μν and ðāweffÞJ coefficients: (i) planetary eph-
emerides analysis given by Table II with the correlation
matrix from Table III [or equivalently the results from
Table II on the linear combinations given by Eqs. (15)],
(ii) LLR data analysis from [19] summarized in Table V
with linear combinations given by Eqs. (16a), (16b), and
(20) and (iii) atom interferometry gravimetry analysis from
[20,21] presented in Table VII with the linear combinations
given by Eq. (23). The (marginalized) results of this fit are
presented in Table VIII.
The resulting estimations do not show any significant

deviations from GR. The combinations of the three data
analyses allow one to estimate each of the coefficients

individually. The spatial part of s̄JK is completely deter-
mined by the combination of planetary ephemerides and
LLR data. The atom interferometry gravimetry is not
accurate enough to provide any significative improvement
on the uncertainty of these coefficients. With an improve-
ment of 2 orders of magnitude, the atom gravimetry data
would become significative to estimate the s̄JK coefficients.
On the other hand, the three data sets are required in order
to decorrelate the s̄TJ and the ðāweffÞJ coefficients. The
uncertainties on s̄TJ are much larger than those shown in
Table VI where the coefficients ðāweffÞJ have been neglected.
This reflects the fact that the individual coefficients are still
highly correlated.

V. DISCUSSION

First of all, the accuracy of the constraints on the SME
coefficients obtained in Table II (planetary orbital dynamics
alone) are of the same order of magnitude as the binary
pulsars [25] constraints on the SME coefficients with an
improvement of 1 order of magnitude on the coefficients
s̄YZ. Nevertheless, it is known that nonperturbative effects
(similar to those computed in [49]) may arise in binary
pulsar systems. The nonperturbative effects depend highly
on the fundamental theory (for example, see [50] for
nonpertubative calculations in Einstein-Aether theory or
in Hořava gravity). In general, the results from [25] are
effective constraints on the strong field version of the s̄μν

that may include nonperturbative strong field effects and
one should be careful when comparing strong field
tests and weak field tests as the one performed in
Sec. III. The results shown in Table IV improve the current
Solar System constraints [32] by 1 to 3 orders of magni-
tude. Furthermore, the analysis combining planetary orbital
dynamics and LLR from Table VI improves by 2 to 3 orders
of magnitude the previous results that combined LLR and
atom interferometry. This shows the high impact provided
by planetary ephemerides analysis.
As mentioned in Sec. III, our results show that the

estimated SME coefficients are highly correlated. The
correlations are due to the similarity of the orbital planes
of all the planets. Therefore, one way to improve the results
by reducing the correlations is to use bodies with different
orbital planes like e.g. asteroids. This can be achieved for
example with Gaia observations similar to what is proposed
in [51].
The constraints obtained in Sec. III are mainly due to the

internal planets. For instance, Jupiter has absolutely no
influence on the results shown in Table II. This is a
consequence of its not so well-known orbit. An improve-
ment by a factor 10 on the knowledge of Jupiter’s orbit is
required for that planet to play a significant role in this
analysis. Therefore, the improvement of Jupiter’s trajectory
expected from the analysis of Juno’s radioscience and very
long baseline interferometry data [52] may improve the

TABLE VII. Estimations of the SME coefficients derived from
atom interferometry gravimetry by [20,21].

SME linear combination Estimation

s̄XX − s̄YY ð4.4% 11Þ × 10−9

s̄XY ð0.2% 3.9Þ × 10−9

s̄AAI ð−2.6% 4.4Þ × 10−9

s̄BAI ð−0.3% 4.5Þ × 10−9

s̄TX ð−3.1% 5.1Þ × 10−5

s̄TY ð0.1% 5.4Þ × 10−5

s̄TZ ð1.4% 6.6Þ × 10−5

TABLE VIII. Estimated mean and 1σ uncertainty of the SME
coefficients obtained with a fit combining results from Sec. III,
LLR data analysis from [19] and atom interferometry gravimetry
experiment [20,21].

SME coefficients Estimation

s̄XX − s̄YY ð9.6% 5.6Þ × 10−11

s̄Q ¼ s̄XX þ s̄YY − 2s̄ZZ ð1.6% 0.78Þ × 10−10

s̄XY ð6.5% 3.2Þ × 10−11

s̄XZ ð2.0% 1.0Þ × 10−11

s̄YZ ð4.1% 5.0Þ × 10−12

s̄TX ð−7.4% 8.7Þ × 10−6

s̄TY ð−0.8% 2.5Þ × 10−5

s̄TZ ð0.8% 5.8Þ × 10−5

αðāeeffÞX þ αðāpeffÞX ð−7.6% 9.0Þ × 10−6 GeV=c2

αðāeeffÞY þ αðāpeffÞY ð−6.2% 9.5Þ × 10−5 GeV=c2

αðāeeffÞZ þ αðāpeffÞZ ð1.3% 2.2Þ × 10−4 GeV=c2

αðāneffÞX ð−5.4% 6.3Þ × 10−6 GeV=c2

αðāneffÞY ð4.8% 8.2Þ × 10−4 GeV=c2

αðāneffÞZ ð−1.1% 1.9Þ × 10−3 GeV=c2
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• best Upper Limits on some linear
combinations (difficult to decorrelate)

see A. Hees, Q. Bailey, CLPL et al, PRD, 2015

distributions are presented in Fig. 1. The corresponding
Bayesian confidence intervals are presented in Table II.
Another approach (based on the first run) to avoid highly

correlated coefficients is to find the independent linear
combinations of the SME coefficients that can be deter-
mined by planetary ephemerides analysis. This can be done
numerically by performing a normalized Cholesky decom-
position of the covariance matrix,

C ¼ KTD2K; ð13Þ

where C is the covariance matrix of the SME coefficients
estimated from our first run, K is an upper triangular matrix
whose diagonal elements are unity and D is a diagonal
matrix. Then the linear combinations b of the fundamental
SME coefficients (noted p) given by

b ¼ K−Tp; ð14Þ

with K−T the inverse of the transpose of K, can be
determined completely independently by the analysis of
planetary orbital dynamics. In our case, this Cholesky
decomposition (K−T) is given by

b1 ¼ ðs̄XX − s̄YYÞ; ð15aÞ

b2 ¼ −1.37b1 þ s̄Q; ð15bÞ

b3 ¼ −0.15b1 − 0.31s̄Q þ s̄XY; ð15cÞ

b4 ¼ 0.013b1 þ 0.064s̄Q − 0.48s̄XY þ s̄XZ; ð15dÞ

b5 ¼ 0.26b1 − 0.31s̄Q þ 0.81s̄XY − 1.67s̄XZ þ s̄YZ ð15eÞ

b6 ¼ −35.5b1 þ 9.35s̄Q − 22.67s̄XY − 33.95s̄XZ

þ 7.83s̄YZ þ S̄X⊙; ð15fÞ

b7 ¼ 1641.4b1 − 2101.1s̄Q þ 4939.9s̄XY − 8846.8s̄XZ

þ 4810.6s̄XZ − 0.89S̄X⊙ þ S̄Y⊙; ð15gÞ

b8 ¼ 44.5b1 þ 47.1s̄Q − 580.1s̄XY þ 1041.3s̄XZ

þ 231.5s̄YZ þ 3.43S̄X⊙ þ 2.56S̄Y⊙ þ S̄Z⊙; ð15hÞ

with the expression of S̄J⊙ given by Eq. (5). We can now use
the linear combinations bi as fundamental parameters for
our analysis. Performing a new MC run (using the same
prior and likelihood as previously), we show that these
combinations can be estimated without any correlation.
This can be seen in Fig. 2 where the 2D marginal posterior
pdf on the bi combinations are presented. More quantita-
tively, the computation of the correlation matrix shows that
the bi combinations are completely decorrelated by plan-
etary ephemerides analysis since the absolute values of the
correlation parameters never exceed 0.03. The 1D posterior
pdf of the bi combinations are also represented in Fig. 2.
The estimated mean and standard deviation are given in
Table IV. The obtained uncertainties are much smaller than
those given in Table II.
We want to emphasize the fact that the results from both

approaches presented above are completely equivalent.
They are two ways to represent the same results. One is
free to choose which approach is more appropriate: to work
with the fundamental SME coefficients determined by
Table II at the price of including the covariance matrix

TABLE II. Estimations of the SME coefficients. These esti-
mations are still correlated and the correlation matrix is given in
Table III. The uncertainties correspond to the 68% Bayesian
confidence levels of the marginal pdf.

SME coefficients Estimation

s̄XX − s̄YY ð−0.8% 2.0Þ × 10−10

s̄Q ¼ s̄XX þ s̄YY − 2s̄ZZ ð−0.8% 2.7Þ × 10−10

s̄XY ð−0.3% 1.1Þ × 10−10

s̄XZ ð−1.0% 3.5Þ × 10−11

s̄YZ ð5.5% 5.2Þ × 10−12

S̄TX⊙ ð−2.9% 8.3Þ × 10−9

S̄TY⊙ ð0.3% 1.4Þ × 10−8

S̄TZ⊙ ð−0.2% 5.0Þ × 10−8

FIG. 2 (color online). 2D marginal posterior pdf (useful to
assess the correlations) of the linear combinations bi of the SME
coefficients given by Eq. (15). On the 2D plots, the blue dotted
contours represent the 67% Bayesian confidence area, the red
continuous contour represent the 95% Bayesian confidence area
and the dashed green contours represent the 99.7% Bayesian
confidence area. The 1D histograms represent the marginal pdf of
the SME linear combinations bi.
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estimations obtained by INPOP10a [33] on supplementary
longitude of nodes _Ω and on supplementary argument of
perihelia1 _ω.
Since s̄TT and ðāweffÞT do not play any role in the orbital

dynamics and s̄μν is trace free, the observations depend on
eight independent fundamental coefficients: s̄XX − s̄YY ,
s̄Q ¼ s̄XX þ s̄YY − 2s̄ZZ, s̄XY , s̄XZ, s̄YZ and S̄TJ⊙ (these
coefficients will be denoted as pi in the following). In
this communication, we perform a Bayesian inversion to
infer knowledge on these eight independent coefficients
using a Monte Carlo Markov chain (MCMC) algorithm.
The approach is very similar to the one used for binary
pulsar data [25]. The observations are assumed to be
independent and the errors to be normally distributed.
The pdf describing the likelihood (i.e. the probability to
obtain observations Oi given certain values of the SME
coefficients pk) is given by

LðOijp1; p2;…pnÞ ¼ cste−χ
2=2 ð9Þ

where the χ2 is computed by

χ2 ¼
X

pl

ð _ωpl;SMEðpkÞ − _ωpl;INPOPÞ2

σ2_ωpl

þ
ð _Ωpl;SMEðpkÞ − _Ωpl;INPOPÞ2

σ2_Ωpl

; ð10Þ

where the index pl of the sum is running over the six
different planets from Table I, _Ωpl;INPOP, _ωpl;INPOP and the
corresponding σ are from Table I and where _ωpl;SMEðpkÞ
and _Ωpl;SMEðpkÞ are simulated values depending on the
SME coefficients by (7). The posterior pdf of the SME
coefficients is given by

Pðp1;p2;…pnjOiÞ¼ CLðOijp1;…pnÞπðp1;…pnÞ; ð11Þ

where πðp1;…pnÞ ¼ πðp1Þ…πðpnÞ is the prior pdf on the
SME coefficients pk and C a constant. We use a uniform
prior pdf on the SME coefficients and the MCMC algo-
rithm used is a standard Metropolis-Hasting algorithm [45].
We run the Metropolis-Hastings sampler until 106 samples
have been generated. The convergence of the MC is
ascertained by monitoring the estimated Bayesian confi-
dence intervals of the parameters. Finally, to diminish the
effect of the starting configuration, we discard the first 1000
samples.
The marginal pdf of a single SME coefficient pj is

given by

PðpjjOiÞ ¼
Z

dp1

Z
dp2…Pðp1;…; pnjOiÞ; ð12Þ

where the integrals are performed over all the SME
coefficients pk except pj.
A first run shows that the coefficients of our model are

highly correlated, see Fig. 1. We have used the correlation
matrix estimator to assess the strength of the parameters
correlations, see Table III. These correlations are mainly
due to the fact that all planets have very similar, low
inclination, orbital planes. Nevertheless, we can produce
marginal 1D posterior distribution for each of the eight
SME coefficients. The histograms corresponding to these

FIG. 1 (color online). 2D marginal posterior pdf (useful to
assess the correlations). On the 2D plots, the blue dotted contours
represent the 67% Bayesian confidence area, the red continuous
contour represent the 95% Bayesian confidence area and the
dashed green contours represent the 99.7% Bayesian confidence
area. The histograms represent the marginal pdf of the SME
coefficients.

TABLE I. Values of supplementary longitude of nodes and
argument of perihelia estimated by INPOP10a (see Table 5 from
[33]). These values are estimated in [33] as the interval in which
the differences of postfit residuals are below 5%.

Planet _Ω (mas × cy−1) _ω (mas × cy−1)

Mercury 1.4% 1.8 0.4% 0.6
Venus 0.2% 1.5 0.2% 1.5
EMB 0.0% 0.9 −0.2% 0.9
Mars −0.05% 0.13 −0.04% 0.15
Jupiter −40% 42 −41% 42
Saturn −0.1% 0.4 0.15% 0.65

1In [33], _ω is noted _ϖ which is commonly used for the
longitude of the perihelion but the estimated values correspond to
supplementary argument of perihelia and not to longitude of
perihelia (usually noted by ϖ) [44].
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• Use GAIA asteroid observations = advantage of a large 
sample of different orbital parameters (300 000 objects)
- decorrelation of SME parameters
- complementary to planetary ephemerides (different bodies, 

different type of observations, different method to analyze the data)

• accuracy ~ 0.2-0.5 mas

Gaia and SSO (asteroids)



Initial	condition
10	000	ast.

Orbit 
propagation

Observations 
time (with Gaia 
scanning law)

Astrometric	
observables	+	
partials	der.

Sim. in	GR	or	
alternative theory	
+	var.	equation

Inversion of the 
normal matrix 
(fit of parameters)

- sensitivity 
- correlations
- bias

- local	parameters	(IC)

- global	parameters	(grav.	theory,	J2,	…)

done by GaiaWP DU460

How simulate Gaia SSO observations ?



• local parameters: 6 initial conditions / asteroids (60 000 par.)

• global parameters:

- Solar Quadrupole moment J2.

- Post-Newtonian Parameter 𝛽

- Sun Lense-Thirring effect: depends on the Sun spin S

- Violation of the Strong Equivalence Principle (Nordtvedt effect): 𝜂

- Fifth Force formalism: (𝜆, 𝛼)

- Time variation of G: constant 

- Periodic variation of G

- Standard Model Extension formalism: 

• 10 000 asteroids with astrometric accuracy of 0.2 mas

Parameters considered



1+ order of magnitude improvement wrt current upper limits for 
several SME coefficients

Main advantage: decorrelation of the SME parameters

Tables

A. Hees

Bla

Table 1: Bla
SME Parameter sensitivity (�)

s̄XX � s̄Y Y 9⇥ 10�12

s̄XX + s̄Y Y � s̄ZZ 2⇥ 10�11

s̄XY 4⇥ 10�12

s̄XZ 2⇥ 10�12

s̄Y Z 4⇥ 10�12

s̄TX 1⇥ 10�8

s̄TY 2⇥ 10�8

s̄TZ 4⇥ 10�8

1

Tables

A. Hees

Bla

Table 1: Bla
SME Parameter sensitivity (�)

s̄XX � s̄Y Y 9⇥ 10�12

s̄XX + s̄Y Y � s̄ZZ 2⇥ 10�11

s̄XY 4⇥ 10�12

s̄XZ 2⇥ 10�12

s̄Y Z 4⇥ 10�12

s̄TX 1⇥ 10�8

s̄TY 2⇥ 10�8

s̄TZ 4⇥ 10�8

s̄XX � s̄Y Y s̄XX + s̄Y Y � s̄ZZ s̄XY s̄XZ s̄Y Z s̄TX s̄TY s̄TZ

s̄XX � s̄Y Y 1
s̄XX + s̄Y Y � s̄ZZ 0.28 1

s̄XY -0.06 -0.01 1
s̄XZ -0.17 -0.06 0.46 1
s̄Y Z -0.16 0.71 0.01 0.01 1
s̄TX 10�3 -0.01 -0.01 10�3 -0.01 1
s̄TY 0.03 0.09 0.01 -0.01 0.02 -0.16 1
s̄TZ -0.02 -0.1 -0.01 0.01 -0.02 0.13 -0.67 1

1

What to expect with 5 years mission  



Preliminary results with 10000 Gaia SSO

details in Hees, Hestroffer, CLPL & David, SF2A proceedings 2015, arXiv:1509.06868
Hees, CLPL et al. in preparation for PRD

• First possibility to decorrelate all SME parameters

• Analysis done including the Sun J2: similar results ; J2 decorrelates as well

• Improvement by ~ 1 order of magnitude wrt current upper limits, but based on
10000 SSO simulation, not 300 000 as expected with Gaia J

• Results obtained on 5 years time-span and pessimistic astrometric accuracy

• We plan to extend the study to include gravity-matter coupling, but we have to
consider also Gaia photometric observations Need of light curve !

• Possible extension to 10 years mission. Simulations ongoing.



Modeling SME-VLBI delay & fit
Lambert & CLPL, 2009 and 2011 : determination of PPN Gamma at 

the level of 10-4, 
1 order of mag below Cassini but strong statistics & robustess

First, we derive the VLBI delay in SME from Bailey (2009) : 

x1/2 r1/2 = |x1/2|with positions of stations and
n1/2 =

x1/2

r1/2
kand is the direction of the source.

• Modification of CALC with module 
USERPART. Test with post-fit 
analysis : 

• 2 & 8 Ghz for solar activity

• 8 Ghz for SME analysis

• Systematics on CONT08 data
but we kept them. 

s̄TT = (�5± 8)⇥ 10�5
CLPL, Hees & Lambert, submitted PRL

arXiv:1604.01663

s̄TT = (�0.6± 2.1)⇥ 10�8



LLR and SME 14401 normal points spanning over 09/1969 to 12/2003.

Post-fit LLR analysis:
• Looked for analytical signals derived in Bailey et. 

al., 2006. 
• Planetary Ephemeris Program (PEP) developed at 

MIT to re-iterate => cross-correlation possible

Provide 6 SME coefficient estimates combinations at the 
level 10−6 and 10−11. Realistic error σr = Fσ with F = 20, 
from PPN analysis. 

α	=	cste	and	β	=	cste.	From	observation	T	=	2π/α	̇	=	2π/β	̇	=	18,	6	y.	
Analytic solution only accounting for short periodic terms. Only available for few years time-
span. 

Least-square fit, estimating only SME coefficients. No correlations taken into account with 
others global parameters, only cross-correlation. 

SME oscillating signatures at the same frequencies than natural frequencies : 

�r2!,2✓(t) = [A20+A22] cos (2!t+2✓) +B22 sin (2!t+2✓)

�rSME(t) = ASME cos (2!t+2✓) +BSME sin (2!t+2✓)
Lunar potential

2d degree !

State of the art



ELPN, SME lunar ephemeride
Dynamical modeling from scratch :

• Integrate the motion of Solar System bodies 
• Newtonian point-mass interactions. 
• Figure potential of bodies : 

• Orientation of bodies, 
• J2 of the Sun,
• J2, J3, J4 and J5 of the Earth, 
• Degree 2, 3, 4 and 5 of the Moon. 

• Tidal and spin effects :
• Dissipation inside anelastic bodies, 
• Time-lag of degree 2 with RK4. 

• Relativistic point-mass interactions : 
• Solar system barycentre,
• Integrate the time scale correction (in pure GR).
• SME correction for Earth-Moon system only

• Lunar librations : 
• Momentums due to punctual (5th degree) and extended

(2th degree) bodies, 
• Geodetic precession effect,
• Fluid lunar core,
• Friction between solid mantle and fluid core. 

• Integrate partials at the same time than forces and momentums. 

Pre-processing of LLR normal points : 
Update of the CAROLL software
• Tchebychev polynomials of the solution and partials.
• LLR analysis in SME framework by chi-square fitting

Previous work This work Results

Dynamical modelling

Physical effects
The Earth, the Moon, the Sun, planets and Pluto with the 70 most massive asteroids. All the
associated partials of the following equations.

�e
x

e
y

e
ze0

z

e0
x

e0
y

�  

✓

FIGURE – The 3 Euler angles (�,✓, ).

1 Newtonian point-mass interactions.

2 Figure potential of bodies :

Orientation of bodies (cf. Figure),
J

2

of the Sun,
J

2

, J

3

, J

4

and J

5

of the Earth,
Degree 2, 3, 4 and 5 of the Moon.

3 Tidal and spin effects :

Dissipation inside an-elastic bodies,
Time-lag of degree 2 with RK4.

4 Relativistic point-mass interactions :

Solar system barycentre,
TT � TDB = f (TDB),
SME correction for Earth-Moon system alone.

5 Lunar librations :

Momentums due to punctual (5th degree) and extended (2th degree) bodies,
Geodetic precession effect,
Fluid lunar core,
Friction between solid mantle and fluid core.

ODEX,		Everheart
quadruple precision = 10-34

6 CPU days for a solution !

2

parameters (masses, positions and velocities,...) are ne-
glected. Moreover, the analytical Lorentz violation signa-
tures which are looked for in this kind of post-fit residu-
als analysis, are always a combination of natural frequen-
cies appearing in the fundamental problem governing the
evolution of the experiment. Consequently, after a fit in
pure GR, signals at the natural frequencies are absorbed
in the redefinition of initial conditions and physical con-
stants. Therefore, it could be problematic to look for
main analytical Lorentz violating signals in post-fit resid-
uals since it could have been absorbed in a redefinition
of one or more physical parameters. Finally, in the case
of LLR data analysis, the oscillating signatures derived
in [9] and used in [18] to determine pseudo-constraints
are computed only accounting for short periodic oscilla-
tions, typically at the order of magnitude of the mean
motion of the Moon around the Earth. For instance, the
recession motion of line of apsides in 8.85 years or the
precession motion of the lunar orbit on the ecliptic plane
in 18.6 years are both neglected. Therefore, this analytic
solution remains only valid for few years compared to
the 45 years of LLR data span (see also the discussion
in footnote 2 from [15]). In a more correct strategy, the
SME modeling must be included in the complete data
analysis and the SME coe�cients need to be estimated
in a global fit along with others parameters by taking
into account short an long period terms and also correla-
tions. This approach has recently been successfully used
in a study using Very Long Baseline Interferometry data
[19] to improve s̄

TT estimation. In this letter, we apply
for the first time the same approach to estimate SME
coe�cients from LLR data.

LLR is used to conduct high-precision measurements of
the light travel time of short laser pulses between a LLR
station on Earth (Mc Donald Observatory in Texas, Ob-
servatoire de la Côte d’Azur in France, Haleakala Obser-
vatory in Hawaii, Apache point Observatory in New Mex-
ico and Matera in Italy) to a corner cube retro-reflector
on the lunar surface (Apollo XI, XIV, XV and Lunokhod
1, 2) and the way back to a station receiver. The change
of the round-trip travel time contains a lot of information
about the Earth-Moon system leading to many di↵erent
fields of investigations as lunar science, geodesy, geody-
namics and gravitational physics. In addition, the de-
termination of physical or gravitational parameters ben-
efits from the 45 years of LLR data span and from the
technology improvement which leads to the current ob-
servational accuracy at the sub-centimetric level [20, 21].
LLR data are presented as normal points which com-
bine time series of measured light travel time of photons,
averaged over several minutes to achieve a higher signal-
to-noise ratio measurement of the lunar range at some
characteristic epoch. Each normal-point is characterized
by one emission time, one time delay and some additional
observational parameters as temperature, pressure, laser
wavelength etc. According to [22], the theoretical pen-

dent of the time delay is defined as
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is the theoretical round-trip travel time in TAI (In-
ternational Atomic Time), T1, T2 and T3 are respectively
the Barycentric Dynamical Time (TDB) at the emission,
reflection and reception points, r

o

is the barycentric po-
sition vector of one of the 5 LLR emitter stations, r

o

0 is
the barycentric position vector at the reception point on
Earth, r

r

is the barycentric position vector of one of the
5 lunar retro-reflectors, �⌧

s

is the one-way gravitational
time delay correction (i.e. the Shapiro time delay), �⌧

a

is the one-way troposphere correction to the light propa-
gation and �⌧

t

is a relativistic time scale correction due
to the transformation between TDB and TAI (see [23]
for further details).
In order to analyze LLR data in the SME framework,

we have built a new numerical lunar ephemeris, ELPN
(Éphéméride Lunaire Parisienne Numérique) which com-
putes numerically orbital and rotational motion of the
Moon. In addition, ELPN computes also the angular
velocity of the Moon’s liquid core considering a laminar
damping term between the core and the lunar mantle
since tide and core dissipation present separable signa-
tures as discussed in [24]. As a validation of our dynam-
ical model, we compare our GR solution with the DE430
solution from JPL [25].
The main di↵erences are the non-sphericity of the

Moon gravitational potential only modeled until the 5th

degree in ELPN with respect to 6th degree in DE and
the number of accounted asteroids (70 in ELPN versus
343 in DE). Moreover, we integrate the partial deriva-
tives of the observables with respect to all the estimated
parameters by including directly the variational equa-
tions in the integration (representing a total of 6000 in-
tegrated equations) instead of pure numerical computa-
tion method implemented in DE. The most important
specificity of ELPN, is the Lorentz violating contribu-
tions arising from the Earth-Moon system, implemented
with the associated partial derivatives. The additional
acceleration of the Earth-Moon vector due to SME is
given in [9] (see Eq. (104)) and is expressed as
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FIG. 2: Sun-centered celestial-equatorial frame.

A. General Considerations

1. Frame conventions and transformations

The comparative analysis of signals for Lorentz viola-
tion from different experiments is facilitated by adopt-
ing a standard inertial frame. The canonical reference
frame for SME experimental studies in Minkowski space-
time is a Sun-centered celestial-equatorial frame [34]. In
the present context of post-newtonian gravity, the stan-
dard inertial frame is chosen as an asymptotically iner-
tial frame that is comoving with the rest frame of the
solar system and that coincides with the canonical Sun-
centered frame. The cartesian coordinates in the Sun-
centered frame are denoted by

xΞ = (T, XJ) = (T, X, Y, Z) (87)

and are labeled with capital Greek letters. By defini-
tion, the Z axis is aligned with the rotation axis of the
Earth, while the X axis points along the direction from
the center of the Earth to the Sun at the vernal equinox.
The inclination of the Earth’s orbit is denoted η. The
origin of the coordinate time T is understood to be the
time when the Earth crosses the Sun-centered X axis at
the vernal equinox. This standard coordinate system is
depicted in Fig. 2. The corresponding coordinate basis
vectors are denoted

eΞ = (eT , eJ) = (∂T , ∂J). (88)

In the Sun-centered frame, as in any other inertial
frame, the post-newtonian spacetime metric takes the
form given in Eqs. (35)-(37). This metric, along with
the point-mass equations of motion (52), forms the basis
of our experimental studies to follow. The corresponding
line element can be written in the form

ds2 = −[1 − hTT (T, X⃗) + O(4)]dT 2

+2hTJ(T, X⃗)dTdXJ

+[δJK + hJK(T, X⃗)]dXJdXK , (89)

where hTT is taken to O(3), hTJ is taken to O(3) and
hJK is taken to O(2). For the purposes of this work, it

typically suffices to include contributions to the metric
fluctuations from the Sun and the Earth.

Of particular interest for later applications are various
sets of orthonormal basis vectors that can be defined in
the context of the line element (89). One useful set is
appropriate for an observer at rest, dXJ/dT = 0, at a
given point (T, X⃗) in the Sun-centered frame. Denoting
the four elements of this basis set by eµ with µ ≡ (t, j),
we can write

et = δT
t[1 + 1

2hTT (T, X⃗) + O(4)]eT ,

ej = δJ
j [eJ − 1

2hJK(T, X⃗)eK ] + δJ
jhTJ(T, X⃗)eT .

(90)

Direct calculation shows that this basis satisfies

ds2 = −e2
t + e2

j (91)

to post-newtonian order.
Another useful set of basis vectors, appropriate for an

observer in arbitrary motion, can be obtained from the
basis set (90) by applying a local Lorentz transformation.
Denoting this new set of vectors by eµ̂, we have

eµ̂ = Λν
µ̂(τ)eν . (92)

It is understood that all quantities on the right-hand side
of this equation are to be evaluated along the observer’s
worldline, which is parametrized by proper time τ .

For the experimental applications in the present work,
it suffices to expand the local Lorentz transformation in
Eq. (92) in a post-newtonian series. This gives

et̂ = δt
t̂(1 + 1

2v2)et + vjej ,

eĵ = δj

ĵ
vkRkjet + δj

ĵ
(δkl + 1

2vkvl)Rljek. (93)

The components (et̂)
Ξ coincide with the observer’s four-

velocity uΞ in the Sun-centered frame. In this expression,
vj is the coordinate velocity of the observer as measured
in the frame (90), and Rjk is an arbitrary rotation. The
reader is cautioned that the coordinate velocities vj and
vJ typically differ at the post-newtonian level. The ex-
plicit relationship can be derived from (90) and is found
to be

vj = δ j
J vJ (1 + 1

2hTT ) + 1
2δ

j
J hJKvK + O(4). (94)

2. Current bounds

In most modern tests of local Lorentz symmetry with
gravitational experiments, the data have been analyzed
in the context of the PPN formalism. The discussion in
Sec. III C shows there is a correspondence between the
PPN formalism and the pure-gravity sector of the mini-
mal SME in a special limit, so it is conceivable a priori
that existing data analyses could directly yield partial
information about SME coefficients. Moreover, a given
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FIG. 1. Top: estimations of s̄

XY and s̄

A as a function of
data sub-samples by LLR stations. Each station name along
x-axis corresponds to the sub-sample without data from the
corresponding station. Bottom: estimations of s̄XZ and s̄

D as
a function of data sub-samples by lunar reflectors. L1 and L2
correspond to sub-samples without respectively Lunokhod 1
and 2 data, while XI, XIV and XV refer to sub-samples with-
out respectively Apollo XI, XIV and XV data. For top and
bottom error bars are those provided by the chi-square fit at
1�stat standard deviation and the red line corresponds to the
theoretical values of the SME coe�cients in GR framework.

by removing one subset of data, an estimate of the sys-
tematic variance is �

2(x) = n�1
n

P
n

i

(x
i

� x̄)2, with x̄

the mean of the n values x

i

. We applied this resam-
pling method to the estimates of the SME parameters
for two cases: (i) by splitting our dataset with respect
to the di↵erent LLR stations (the obtained systematic
variance will be denoted �

2
s

) and (ii) by splitting our
dataset with respect to the di↵erent lunar reflectors (the
obtained systematic variance will be denoted �

2
r

). The
total variance estimate is the sum of the statistical and
of the two estimated uncertainties obtained with the re-
sampling method: �2 = �

2
stat +�

2
s

+�

2
r

. Our estimations
of the SME coe�cients and their realistic errors are re-
ported in Tab. I.

Some of our estimates improved previous constraints
based on post-fit analysis by a factor up to 5. More pre-
cisely, the constraints on the s̄

TJ coe�cients are of the
same order of magnitude as the one from binary pulsars

SME Other works This work

s̄

TX (+5.2± 5.3)⇥ 10�9 (�0.9± 1.0)⇥ 10�8

s̄

XY (�3.5± 3.6)⇥ 10�11 (�5.7± 7.7)⇥ 10�12

s̄

XZ (�2.0± 2.0)⇥ 10�11 (�2.2± 5.9)⇥ 10�12

s̄

A (�1.0± 1.0)⇥ 10�10 (+0.6± 4.2)⇥ 10�11

s̄

C (�1.0± 0.9)⇥ 10�8 (+6.2± 7.9)⇥ 10�9

s̄

D (�1.2± 1.2)⇥ 10�10 (+2.3± 4.5)⇥ 10�11

TABLE I. Table of estimated values of SME parameters of
the minimal SME with LLR data. Second column: results
deduced from a post-fit analysis of binary pulsars observa-
tions in [13]. Third column: results obtained from this work
using LLR data. The quoted uncertainties correspond to 1�
realistic uncertainties based on the statistical and systematic
errors. The linear combinations of the SME coe�cients are
defined in Eqs. (5).

[13] but improve the ones from the planetary ephemerides
by a factor 5 [15]. The estimates on s̄

XY and s̄

XZ im-
proves previous constraint from binary pulsars by a fac-
tor 4-5 and from planetary ephemerides by one order
of magnitude. The estimates s̄

A and s̄

D are improved
by a factor 2.5 with respect to binary pulsars analysis
and by one order of magnitude with respect to planetary
ephemerides. In addition our results improve a previous
post-fit analysis with LLR data [18] by a factor 30 to 800.
Nevertheless, we want to emphasize that the linear com-
binations fitted in that paper has been determined in a
sensitivity analysis based on theoretical calculations (see
[9]) only accounting for short periodic oscillations (see
discussion above). Our numerical analysis shows that
this approach is not precise enough for a full data anal-
ysis since the fitted linear combinations are di↵erent.

As mentioned above, our results are mainly dominated
by systematic uncertainty. One way to improve our es-
timates would be to improve our understanding of these
and to model them carefully. Moreover, some SME co-
e�cients (mainly s̄

A) show slight correlations with pa-
rameters appearing in the rotational motion of the Moon
as the principal moment of inertia, the quadrupole mo-
ment, the potential Stockes coe�cient C22 and the polar
component of the velocity vector of the fluid core. Those
parameters have an impact on the rotational motion of
the Moon which a↵ects the orbital motion through the
e↵ect of the lunar potential. Consequently, it would be
interesting to produce a joint analysis of the GRAIL data
[34, 35] with LLR data. We expect this combined analy-
sis to help in decorrelating the SME parameters from the
lunar potential Stockes coe�cients of degree 2 and there-
fore to improve marginalized estimations of the SME co-
e�cients.

In conclusion, we have analyzed a set of 20721 LLR
data spanning 44 years by using ELPN, a new numer-
ical lunar ephemeris. In this work, the SME modeling
has been included in the complete data modeling and the

Study of	systematics,	i.e. split	data	set	!	

Variation	of	SME	sigma	with data-set		
Sigma	over-estimated.
Need to	find a	realistic scale
factor	F (not	from PPN	!)
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1�stat standard deviation and the red line corresponds to the
theoretical values of the SME coe�cients in GR framework.
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based on post-fit analysis by a factor up to 5. More pre-
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deduced from a post-fit analysis of binary pulsars observa-
tions in [13]. Third column: results obtained from this work
using LLR data. The quoted uncertainties correspond to 1�
realistic uncertainties based on the statistical and systematic
errors. The linear combinations of the SME coe�cients are
defined in Eqs. (5).

[13] but improve the ones from the planetary ephemerides
by a factor 5 [15]. The estimates on s̄

XY and s̄

XZ im-
proves previous constraint from binary pulsars by a fac-
tor 4-5 and from planetary ephemerides by one order
of magnitude. The estimates s̄

A and s̄

D are improved
by a factor 2.5 with respect to binary pulsars analysis
and by one order of magnitude with respect to planetary
ephemerides. In addition our results improve a previous
post-fit analysis with LLR data [18] by a factor 30 to 800.
Nevertheless, we want to emphasize that the linear com-
binations fitted in that paper has been determined in a
sensitivity analysis based on theoretical calculations (see
[9]) only accounting for short periodic oscillations (see
discussion above). Our numerical analysis shows that
this approach is not precise enough for a full data anal-
ysis since the fitted linear combinations are di↵erent.

As mentioned above, our results are mainly dominated
by systematic uncertainty. One way to improve our es-
timates would be to improve our understanding of these
and to model them carefully. Moreover, some SME co-
e�cients (mainly s̄

A) show slight correlations with pa-
rameters appearing in the rotational motion of the Moon
as the principal moment of inertia, the quadrupole mo-
ment, the potential Stockes coe�cient C22 and the polar
component of the velocity vector of the fluid core. Those
parameters have an impact on the rotational motion of
the Moon which a↵ects the orbital motion through the
e↵ect of the lunar potential. Consequently, it would be
interesting to produce a joint analysis of the GRAIL data
[34, 35] with LLR data. We expect this combined analy-
sis to help in decorrelating the SME parameters from the
lunar potential Stockes coe�cients of degree 2 and there-
fore to improve marginalized estimations of the SME co-
e�cients.

In conclusion, we have analyzed a set of 20721 LLR
data spanning 44 years by using ELPN, a new numer-
ical lunar ephemeris. In this work, the SME modeling
has been included in the complete data modeling and the

Jackknife resampling method allows to estimate systematics uncertainties :

We improve :
• by	a	factor	30	to	800	results from Battat et	al.	2007	(	different combinaison)
• by	a	factor	5	post-fit	analysis of	1	coefficient	from binary pulsars
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Conclusions
Build a framework of systematic SME tests with Solar System usual experiments :

• VLBI and LLR complete
• New modeling of observation analysis developped
• New dynamical modeling developped
• New fitting procedures developped,
• Versatile tools. Modifications are under control

We do not work with post-fit residuals to find SME signal :
• Complete process from the data analysis in SME
• Assess correlation between local & global parameters
• We derive realistic constraints not upper limit !

Soon, SLR and navigation experiments will be available…

Construction of ephemerides directly in SME (planetary and natural satellites) :
• Ongoing work on Martian Moon (Phobos and Deymos) as a test case

Gravity-matter coupling to be done soon.

Possible to add new 
features on request. 

PLEASE FEEL FREE TO 
CONTACT US !


