

Détection directe des ondes gravitationnelles avec Advanced Virgo

Éric Chassande-Mottin

CNRS, AstroParticule et Cosmologie, Paris France

1-slide primer on Virgo

- Direct detection of GW
 - Measure space-time distorsion in situ
- Kilometric Michelson interferometer
 - Goal: measure relative difference in optical path length to 10⁻²¹, or 10⁻¹⁸ m over km
 - Sensitive about few 100 Hz
- Target distant astrophysical sources
 - Typically: binaries of stellar mass compact objects (neutron star or black hole)

 $h\sim 10^{-21}~$ for NS binaries at 15 Mpc ~

GW detectors in the world

GW detectors in the world

Since 2007, partnership and data exchange agreement

Science from 1st generation 2005-11

Reached design sensitivity!

S5 S6 LIGO H LIGO L VSR 1 2 3 4 Virgo 2005 2007 2009 2011 2013

3 joint LIGO – Virgo science runs ~2 yrs total

"horizon" = detection range of coalescing binaries of neutron stars (BNS)

LIGO ~ 40 Mpc and Virgo ~ 20 Mpc

Sources of gravitational waves

"Short bursts:" Supernovae, transient sources, ???

Compact Binary Coalescence (CBC): "long bursts" of gravitational waves as stars inspiral, merge and ring down

Continuous sources: Spinning neutron stars

Gravitational wave backgrounds: relic radiation from the big bang

credits: Duncan Brown, LSC

Long duration

Science from 1st generation 2005-11

Coalescing binaries

Phys. Rev. D 85, 082002 (2012)

Science from 1st generation 2005-11

~40 papers and more to come...

Transient searches...

- Upper limits on GW transients [Phys. Rev. D 85, 122007 (2012)]
- GW constraints for magnetars [ApJ 734 L35 (2011)]
- GW constraints for Vela pulsar glitch [Phys. Rev. D 83 042001 (2011)]
- Coincidences with High Energy Neutrinos [JCAP 06 008 (2013)]
- Cosmic strings [Accepted by Phys. Rev. Lett., arXiv:1310.2384]
- Long duration transients (>10 s) [Phys. Rev. D 88 122004 (2013)]

Continuous waves (pulsars)

Beat spin down limits for Crab and Vela pulsars [ApJ 713 671 (2010), ApJ 737 93 (2011)]

Stochastic background

• Beat Big Bang Nucleosynthesis limit at 100 Hz [Nature 460 990 (2009)]

Toward 2nd generation detectors

Advanced Virgo

x 10 more sensitive → x 1000 more sources

Being installed

First science data in 2016

Larger observation bandwidth

Detector highlights: Advanced Virgo

Larger beam size – lower thermal noise from coatings – larger mirrors

GW signal recycling

Science with 2nd generation 2015-2022+

	Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60	-	40 - 80	-	0.0004 - 3	-	—
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017 - 18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

ArXiv:1304.0670

GW astronomy

"photon-based" astronomy

GW-EM follow-up program

- Open call for collaborations (Feb 2014)
 - Great success!
 - More than 60 groups expressed interest
 - From 19 countries
 - ~150 instruments (12 space-based)
 - Full EM spectrum from radio to very high-energies

Potential impact on fundamental physics

For a recent review: Yunes and Siemens, livingreviews.org/lrr-2013-9

Test of gravitation in the strong field ($\chi \propto m/r$ or $\nu = v/c$ not small)

For ref., binary pulsar J0737–3039: $\chi \sim 6 \times 10^{-6}$ $\nu \sim 2 \times 10^{-3}$

Test GR against alternative theories, or detection of anomalies

Coalescing compact binaries as a test-bed

- Deviation of post-Newtonian coefficients Arun et al, Phys. Rev. D74, 024006 (2006), Yunes et al, Phys. Rev. D80, 122003 (2009), Li et al, Phys. Rev. D85, 082003 (2012)
- Violations of the cosmic censorship conjecture (j/m² > 1?) and the no-hair theorem (tidal Love number ≠ 0?)
 Wade et al., Phys. Rev. D 88, 083002 (2013)
- Testing wave polarization states arising in alternative theory of gravity K. Chatziioannou et al, Phys. Rev. D86, 022004 (2012), K. Hayama et al, Phys. Rev. D87, 062003 (2013)

Conclusions

Virgo has fullfilled its mission

Reach target sensitivity, major science objectives published

 With Advanced Virgo, the next decade will probably see the 1st direct detection of GW

Synergy with high-energy astrophysics Potential impact on fundamental physics

Many challenges and a lot of excitement ahead!