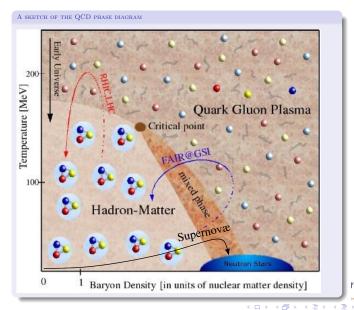
Introduction to the session "Compact objects and strong and electroweak interaction"

Micaela Oertel

micaela.oertel@obspm.fr


Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Diderot

Journée GPhys 2014

1/3

Properties of dense and hot matter

2/3

Properties of dense and hot matter

• Strong interaction part most difficult (strongly interacting many-body system!), no first principle calculations from QCD possible except at $\mu \approx 0$

- Conditions in compact stars not realisable in laboratories :
 - extreme density ($\approx 10^{14} {\rm g/cm^3}$), temperature (0 -100 MeV) and composition (timescale allows for weak interactions to equilibrate
 - → very neutron rich matter)
 - lacktriangle very intense magnetic field (magnetars with surface fields of $10^{14}-10^{15}G$)
 - $\,\blacktriangleright\,$ extreme conditions for neutrinos (matter dense enough to become opaque!)
- Valuable observations from many sources, in particular radio (SKA!) and X-ray (e.g. XMM-Newton \rightarrow Athena), gravitational waves (Virgo), neutrinos (Super-K, IceCube)