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Outline 
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2.  Atom interferometry and GW detection 

3. MIGA main subsystems (brief) 

4. Status and perspectives 
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Overview of the MIGA project 
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• Equipex project : 10 years (2013 – 2023), 9 M€, 13 research institutes, 2 companies 

• Goal : precision gravity measurements with Atom Interferometry (AI) 

• Design and realization of an instrument targeting 2 applications: 

1. « Applied » gravity: monitoring of underground mass distributions 

 Applications: geophysics, hydrology 

2. Fundamental physics  

 Test setup for applications of AI to gravitational wave  (GW) detection 

 Other tests of gravitational physics (UFF, Lorentz invariance). 
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Today’s talk 

References (MIGA subsystems and geophysics applications):  

• B. Canuel et al, E3S Web of Conferences 4, 01004 (2014)  

• R. Geiger et al, Proceedings of the 50th Rencontres de Moriond, arXiv:1505.07137 (2015) 

http://arxiv.org/abs/1505.07137


Overview of the MIGA project 

5 

Implementation site 

• Low noise underground laboratoy  

• Site of (hydro)-geological interest 



Principle of the 
MIGA instrument 

(in brief) 

More details : FOMO 2014 summer school, lecture notes 

https://sites.google.com/site/researchgeiger/home/teaching  
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Principle of atom interferometry 

 Probe the local phase of a laser beam using free falling atoms 

 Mach-Zehnder like interferometer using counter-propagating lasers 

AI output: 𝑃 ∝ cos ΔΦ  

Local accelaration  
of the laser/atom 

2𝑘 =
4𝜋

𝜆
=

4𝜋𝜈0

𝑐
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Interrogation time 2𝑇 ≈ 0.5 𝑠 ; Phase sensitivity = 1/SNR ~ 1 mrad/shot  

Acceleration sensitivity ∼ 10−10 𝑚. 𝑠−2/ 𝐻𝑧 

Gravity gradient sensitivity ∼ 10−13 𝑠−2/ 𝐻𝑧     1 ton at 100 m 

𝐿 = 300 𝑚 cavity 

Principle & orders of magnitude 

Interferometer phase shift at position x :  

Rb87 atoms: 

𝜆 = 780 𝑛𝑚 
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GW detection with AI ? 

From Adhikari, Rev. Mod. Physics 86, 121 (2014) 

Optical Fabry-Perot Michelson GW detectors  

demonstrated outstanding performances ! 
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GW detection with AI ? 

And next generation detectors will be even better….  

But they will still have limitations at low (< 10 Hz) frequency. 

From Adhikari, Rev. Mod. Physics 86, 121 (2014) 
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GW detection with AI ? 

Why not using  perfectly free falling test masses to measure the laser phase? 

 Atom interferometry  

Motivation:  

• At low frequencies (<10 Hz), optical GW detectors are limited by motion noise 

• Residual seismic noise (design of suspension system) 

• Thermal noise in the suspensions 

• Thermodynamical noise in the mirror, etc. 

Adhikari, Rev. Mod. Physics 86, 121 (2014) 



Newtonian Noise 
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Impossible to distinguish a fluctuating gravity gradient 
 from the GW signal with 2 test masses. 



Beating Newtonian Noise with AI arrays 
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Idea : repeat the gradiometer experiment to obtain several realizations of the NN 

The NN characteristic length (few km at most) is << GW wavelength  

 average the NN to zero. 

W. Chaibi, R. Geiger, B. Canuel, A. Bertoldi, A. Landragin, P. Bouyer, submitted for publication 
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Idea : repeat the gradiometer experiment to obtain several realizations of the NN 
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 average the NN to zero. 

W. Chaibi, R. Geiger, B. Canuel, A. Bertoldi, A. Landragin, P. Bouyer, submitted for publication 

NN 
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Shot noise limited AI GW detector 

A (very) challenging project  

for atom optics ! 

ℎ ∼
𝛿𝜙

𝑛𝑘𝐿
 

• 𝛿𝜙 = 1 µ𝑟𝑎𝑑/ 𝐻𝑧  (1010 atoms/second, 20 dB squeezing)   

• 𝑛 = 1000 Large Momentum Transfer beam splitters) 

𝐿 = 3 𝑘𝑚, 0.5 s interrog. time 
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Shot noise limit 
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MIGA geometry 

π 

π/2 

30 cm 

Cold atom cloud 
launching 

Detection 

π 

300 m 

780 nm 

780 nm 
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MIGA main subsystems 

Cavity mirror suspensions 

AI sensors 



MIGA main subsytems 

• SYRTE (Paris) : cold atom source and detection system, AI expertise 

• LP2N (Talence): cavity design, vacuum system 

• ARTEMIS (Nice): cavity mirror suspensions, GW detection expertise 

• µQuans (Talence): laser systems 

• LSBB (Rustrel): tunnels & site management, geophysics expertise 
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Cold atom source  

Design by Louis Amand 

Similar to that of the  

cold atom fountains and  

to the SYRTE gyroscope. 
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108 atoms at 2 µK  

launched at 4 m/s 
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MIGA : status and perspectives 

• First cold atom source delivered by SYRTE to LP2N (June 2015) 

• 6 m AI gradiometer in the optical cavity under design 

• Development of high sensitivity AI techniques at SYRTE 

• Beginning of the digging of the MIGA galleries at LSBB (Jan. 2016) 

• MIGA installation at LSBB in 2018 

• MIGA commissioning and data runs: 2018-2023. 
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Conclusion 

• MIGA : an instrument to study applied and fundamental gravity 

• Applications in geophysics, e.g. monitoring of subsurface mass transfers 

• Test setup for GW detectors with AI.  

 Ideas: use free falling atoms instead of suspended mirrors + network of 

AIs to resolve the Newtonian Noise 

 gain at low frequency (< 10 Hz) 

• Many challenges in cold atom physics to reach ∼ 10−20/ 𝐻𝑧  strain 

sensitivity levels around 1 Hz 

• Important European effort  towards a EU research infrastructure ? 



The MIGA team (a part of it) 

LP2N: I. Riou 

ARTEMIS:  
W. Chaibi 

B. Canuel A. Bertoldi 

D. Holleville 
SYRTE 

A. Landragin 

LSBB: S. Gaffet 
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Thank you for your attention ! 


