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 GRAVITY ?



  

OUTLINE

1. By studing the Galactic Center

2. By using GRAVITY

3. By building an apparent relativistic orbits model

4. By getting an accurate model
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Apparent size of a Schwarzschild
black hole seen from Earth
(D ≈ 8 kpc): Θ

app
 ≈ 53 µas

Biggest balck hole !

S cluster → S2 Orbit 
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0
 = 4.31 ± 0.6 x 106 M
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GYOTO image of an 
accretion disk around a
Schwarzschild black hole
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a) Is there a supermassive black hole at the center of our Galaxy ?
→ Is there an event horizon ?
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a) Is there a supermassive black hole at the center of our Galaxy ?
→ Is there an event horizon ?

b) Is there a black hole described by the General Relativity in the Galactic
Center ?
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EHT (Event Horizon Telescope)
Interferometer
VLBI : 13 stations

Radio → image of Sgr A*

GRAVITY
Interferometer
VLTI : 4 telescopes

Infrared → stars

Comparison of the orbits of stars
close to Sgr A* observed with
GRAVITY and those obtained with
the General Relativity

b) Is there a black hole described by
the General Relativity in the Galactic
Center ?

a)  Is there a supermassive black
hole at the center of our Galaxy ?

1. By studing the Galactic Center

Perfect image 7 stations (2015) 13 stations (2020)

Simulation with a=0 and i=30° 
Fish & Doeleman, Proc. IAU Symp 261 (2010)



  

Angular resolution : 4 mas
Research field of view : 2''
Modes : Imaging et Astrometric
Scientific field of view: 60 mas

2. By using GRAVITY

Interferometer of 4 telescopes working in the K band (2-2.4 µm)



  

Angular resolution : 4 mas
Research field of view : 2''
Modes : Imaging et Astrometric
Scientific field of view: 60 mas
Astrometric accuracy : 10 µas (< 53 µas)

10 µas

Barcelona Paris

2. By using GRAVITY

Interferometer of 4 telescopes working in the K band (2-2.4 µm)



  

3. By building an apparent relativistic orbits model
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GRAVITY → astrometric positions
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Take into account several effects :
→ time delay
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Take into account several effects :
→ time delay
→ pericenter advance
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Without
rotation

With
rotation

Take into account several effects :
→ time delay
→ pericenter advance
→ Lense-Thirring effect
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Primary
image

Secondary
image

γ γ

Take into account several effects :
→ time delay
→ pericenter advance
→ Lense-Thirring effect
→ lens effects
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GYOTO : ray-tracing code developed by Vincent et al. (2011)

Screen
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Apparent positions with GYOTO :
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Accuracy of the future model << 10 µas → ≤ 1µas

4. By getting an accurate model



  

Accuracy of the future model << 10 µas → ≤ 1µas
- take into account the lens effects
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4. By getting an accurate model

Bozza & Mancini (2012)



  

Accuracy of the future model << 10 µas → ≤ 1µas
- take into account the lens effects
- integration of photons with GYOTO : validation of GYOTO in weak and 
  strong field regimes
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Accuracy of the future model << 10 µas → ≤ 1µas
- take into account the lens effects
- integration of photons with GYOTO : validation of GYOTO in weak and   
  strong field regimes

Weak field regime :  
comparaison of GYOTO with analytical formulas developed by Sereno et al. (2008)  
For instance : Einstein ring radius
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Accuracy of the future model << 10 µas → ≤ 1µas
- take into account the lens effects
- integration of photons with GYOTO : validation of GYOTO in weak and 
  strong field regimes

Weak field regime :  
comparaison of GYOTO with analytical formulas developed by Sereno et al. (2008)  
For instance : Einstein ring radius
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Accuracy of the future model << 10 µas → ≤ 1µas
- take into account the lens effects
- integration of photons with GYOTO : validation of GYOTO in weak and 
  strong field regimes

Weak field regime :  
comparaison of GYOTO with analytical formulas developed by Sereno et al. (2008)  
For instance : Einstein ring radius
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Accuracy of the future model << 10 µas → ≤ 1µas
- take into account the lens effects
- integration of photons with GYOTO : validation of GYOTO in weak and 
  strong field regimes

Strong field regime:
comparaison of GYOTO with a semi-analytical ray-tracing code, GeoKerr,
developed by Dexter et al. (2009)  

   
. . GYOTO
- - GeoKerr

δx, δy < 10-3 µas 

a=0.9

4. By getting an accurate model



  

How can we test the General Relativity with the future astrometric data of
GRAVITY ?

By building an apparent relativistic orbits model with GYOTO :
→ importance of lens effetcs
→ GYOTO is valid and accurate

Summury



  

Implement the model

→ computing time of 
GYOTO images  

too long

How can we test the General Relativity with the future astrometric data of
GRAVITY ?

By building an apparent relativistic orbits model with GYOTO :
→ importance of lens effetcs
→ GYOTO is valid and accurate

Summary



  

Implement the model

→ computing time of 
GYOTO images  

too long

How can we test the General Relativity with the future astrometric data of
GRAVITY ?

By building an apparent relativistic orbits model with GYOTO :
→ importance of lens effetcs
→ GYOTO is valid and accurate

Summary

Computation of primary and 
secondary images separately



  

Implement the model

→ computing time of 
GYOTO images  

too long

How can we test the General Relativity with the future astrometric data of
GRAVITY ?

By building an apparent relativistic orbits model with GYOTO :
→ importance of lens effetcs
→ GYOTO is valid and accurate

Summary

Computation of primary and 
secondary images separately

MPI



  

Implement the model

→ computing time of 
GYOTO images  

too long

How can we test the General Relativity with the future astrometric data of
GRAVITY ?

By building an apparent relativistic orbits model with GYOTO :
→ importance of lens effetcs
→ GYOTO is valid and accurate

Summary

Computation of primary and 
secondary images separately

MPI

MesoPSL
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→ computing time of 
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By building an apparent relativistic orbits model with GYOTO :
→ importance of lens effetcs
→ GYOTO is valid and accurate

Summary

Computation of primary and 
secondary images separately

MPI
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1. influence of secondary 
images of S stars on the
future GRAVITY data  

2. influence of the Solar 
System on GRAVITY data
(Christophe 
Le Poncin-Lafitte,
Aurélien Hees)
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