

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

M. Tacca

Laboratoire AstroParticule et Cosmologie (APC) - Paris

Journée GPhys - 2016 July 6th

General Relativity & Gravitational Waves

- 1915: General Relativity -> dynamic space-time
 gravity = space-time curvature

- 1916: Gravitational Waves -> ripples in space-time propagating at the speed of light

Gravitational Waves Sources & Detectors

Gravitational Waves Observations

The events begin to reveal a population of stellar mass black hole mergers

How to measure Gravitational Waves?

Gravitational Waves on Earth modify distances: stretch space in one direction and compress space in the other direction.

This deformation is TINY:

How to measure this tiny deformation?

How to measure Gravitational Waves?

The Michelson Interferometer detects differential effects in arms.

Gravitational Waves & Michelson Interferometer

Gravitational Waves & Michelson Interferometer

Я.Я. Michelson 1852 - 1931

E.W. Morley 1838 - 1923

d ~ λ / 50

How to measure $d = 10^{-18} \text{ m} = \lambda / 10^{12}$?

Mirrors fluctuations induced by many phenomena :

- motion of the Earth ->
 seismic noise
- molecules thermal motion ->
 thermal noise
- light quantum nature ->
 quantum noise
 - laser instability ->
 frequency noise
 - mirror defects ->
 scattered light noise
 - environmental conditions ->
 environmental noise

Theoretical Sensitivity

At Virgo site Seismic noise is ~ 10^{-9} m @ 10 Hz. It must be attenuated: mirrors are suspended -> attenuation > 10^{10} @ 10 Hz.

Virgo (Passive) Suspension System

Thermal Noise: suspension wires (losses) and mirrors coating (losses & roughness).

Suspensions: silica wires used to create a monolithic structure between suspension and mirror (losses ~ 10^{-7}).

Mirrors: surface defects ~ 0.5 nn over d = 35 cm with losses ~ 10^{-4} (coating made by LMA Lyon)

Two components of **quantum noise**: **shot noise** (at high frequency) and **radiation pressure noise** (at low frequency).

Shot noise: fluctuation of photon number impinging on the photodetector $\propto 1 / P_{in}$. SN ~ 10⁻²⁰ m for P_{in} = 100 W -> high power laser.

Radiation pressure noise: motion induced by photons impacting on the mirrors $\propto 1 / m \rightarrow$ heavy mirrors.

Heavy Mirrors: m = 40 kg

Frequency noise of a top class commercial laser ~ 10⁴/f Hz/JHz @ 1 Hz.

Frequency noise needed in GW detector ~ 10^{-6} Hz/JHz @ 10 - 10k Hz.

Frequency stabilized using auxiliary cavities and the Interferometer.

Laser bench

Laser amplifier

Scattered light: difficult to estimate but always present -> one of the major risk towards the final sensitivity.

Mitigation strategy: improve the quality of the optics; baffle to shield mirrors, towers, pipes; photodiodes suspended in vacuum; control of the position of the photodiodes benches with respect to the interferometer.

Scattered light around the mirror Mirror baffle

Tower baffle Photodiode Bench suspension

To stabilize the environmental conditions -> The core of the instruments is in UH vacuum ($p = 10^{-9}$ mbar for H₂).

LIGO Livingston (LA)

Virgo (Italy)

Geo (Germany)

LIGO Livingston (LA)

Once the interferometer is built, the commissioning work can start.

How can we be sure to have measured a GW?

- The status of the interferometer is monitored and analyzed during the data taking.
- sensors are installed everywhere around the interferometer;
- more than 200000 auxiliary channels recorded to monitor the detector behavior and the environmental conditions.

How can we be sure to have measures a GW?

THOD and in auxiliary channels to erase corrupted data.

Time coincidence between the two interferometers

All noise sources are excluded and only clean data are considered to search for a GW signal

Conclusions

On September 14th 2015 the two LIGO detectors observed for the first time a transient gravitational wave signal. On December 26th 2015 a second BH-BH coalescence has been observed by the two LIGO detectors.

A gravitational wave induces a tiny deformation.

Michelson Interferometer is the most appropriate instrument to measure such deformation.

BUT d = 10^{-18} m challenging to be measured: many "tricks" used to improve the sensitivity of the Interferometer.

Careful detector characterization made to consider only clean data in the search for gravitational waves.