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Gravitational Spectrum
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Atomic detectors



First LIGO-Virgo detections
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LIGO-Virgo Collaboration
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Gravitation from space
• Exploring the lower-frequency part requires to go to

space: this is ESA’s Laser Interferometer Space
Antenna (LISA) project

• Three spacecraft separated by 2.5 million of
kilometres exchange laser beams, forming several
Michelson-like interferometers

• Trailing the Earth on its orbit around the Sun and
rotating through the three years of the nominal
mission
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Gravitation from space
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LISA Consortium (2017). Laser Interferometer Space Antenna.
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• Test-masses should be good inertial references, i.e.
free-falling and protected from other forces

• Spacecraft submitted to solar winds, radiation
pressure, thrusters noise, etc…

• Gold-platinum cubic test-masses
protected inside spacecraft and
therefore kept drag-free, so they
can fly on geodesics

Gravitation from space
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LISAPathFinder: a proof of concept
• Proof-of-concept ESA mission

launched in December 2015

• An LISA arm is shrunk down
to 38 cm between two test
masses that are kept drag-free

• Optical interferometry for
precise measurement of the
residual acceleration of one
mass relative to the other

 10
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LISAPathFinder: a proof of concept
• Results announced last February exceeded 

requirements in the LISAPathFinder frequency band
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Armano, M., et al. (2018). Beyond 
the Required LISA Free-Fall 
Performance: New LISA Pathfinder 
Results down to 20  µHz. Physical 
Review Letters, 120(6), 061101
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Interferometric Detection
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• Laser interferometry is the
only on-ground detection
technique that was
experimentally validated

Interferometric Detection
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Space-Based Detection

 16

Michelson Transfer Function for Monochromatic Waves
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• Perfect orbits do not exist: distances between
spacecraft not equal nor constant in time [Rajesh
Najar et al. 2005], i.e. spacecraft relative motion

• Point-ahead mechanism and moving telescopes and
optical benches to be sure to send beam correctly

• Additional shift in phase due to relativistic effects
and Doppler effect that can mock passing waves

Space-Based Detection
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Space-Based Detection
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Point-Ahead Mechanism



Space-Based Detection
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Moving Telescopes, Optical Benches and GRS
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Laser Noise with Unequal Arms
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Laser Noise with Unequal Arms
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• Laser frequency noise does not cancel to levels that
allow detection of gravitational waves



Time-Delay Interferometry
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• Corresponding power spectral density is 15 orders of
magnitude above that of ground-based detectors

• Phase must be measured at µrad precision so we
need a post-precessing algorithm to reduce this laser
frequency noise by 8 orders of magnitude in
amplitude

• This is Time-Delay Interferometry (TDI), described
in [Armstrong, Estabrook and Tinto. 1999]
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Time-Delay Interferometry
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Time-Delay Interferometry
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TDI-like Transfer Function for Monochromatic Waves



LISA Time-Delay Interferometry
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• For LISA we reconstruct 3 offline Michelson
interferometers, among which two independent

• 3 interferometric measurements per optical bench:
s for science, 𝜏 for reference, 𝜀 for test-mass

• Used to reduce other correlated noises

LISA Time-Delay Interferometry
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LISA Time-Delay Interferometry
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Optical Setup for a LISA Spacecraft



LISA Time-Delay Interferometry
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• Only works for armlengths constant in time, next
generations to cancel laser frequency noise at
higher-order in derivatives of the armlengths

• Interferometric measurements at high frequency are
filtered and downsampled before they are sent to
Earth and used in TDI

• Effect of antialiasing filters?

LISA Time-Delay Interferometry
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• Derived analytic model for the laser noise residual
power spectrum after TDI, taking into account
varying armlengths and antialiasing filters

• Orbits modulated with characteristic frequency of
10-7 Hz, so develop at first order for “linear delays”

• Exact and approximated spectra for frequencies
smaller than Nyqvist sampling frequency:
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IMPACT ON LISA SCIENCE 
AND INSTRUMENT DESIGN
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TDI 1.5 with linear orbits and no decimation

Modeling of Residuals



 36

TDI 2 with linear orbits and no decimation

Modeling of Residuals
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TDI 2 with realistic Keplerian orbits and no decimation

Modeling of Residuals
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TDI 2 with realistic Keplerian orbits and no decimation

Modeling of Residuals
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• Performances of TDI and frequency band directly
impact instrumental design decisions, e.g.

• Sampling frequency impacts quantity of data to
transmit to Earth, antenna size and power

• Characteristic of filters impacts design of
the on-board computers

• Impacts on the global instrumental noise budget
drive research and development, i.e. clocks, lasers,
cross-talking systems
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LISA Mission Proposal, 2017.
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LISA Mission Proposal, 2017.
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• Laser frequency noise residuals well-modeled and
reduced below required levels (secondary noises) in
this simple setup: confirm feasibility of detection

• Antialiasing filter correlate laser noise samples and
have an impact on the residual laser noise

• Ongoing work to optimize filter to keep below
required levels and maximize useful frequency band
(required at [10-4, 0.1] Hz but we want up to 1 Hz)

• Include uncertainties about “ranging” and clocks
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