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First LIGO-Virgo detections
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e Exploring the lower-frequency part requires to go to
space: this is ESA’'s Laser Interferometer Space
Antenna (LISA) project

e Three spacecraft separated by 2.5 million of
kilometres exchange laser beams, forming several
- Michelson-like interferometer




Gravitation from space

1 AU (150 million km)

Sun |

Interferometer Space Antenna.

LISA Consortium (2017). Laser
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Gravitation from space

e [est-masses should be good Inertial references, 1.e.
free-falling and protected from other forces

e Spacecraft submitted to solar winds, radiation
pressure, thrusters noise, etc...

e Gold-platinum cubic test-masses
protected Inside spacecraft and
therefore kept drag-free, so they

can f geodesics
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LISAPathFinder: a proof of concept

e Proof-of-concept ESA mission
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e Proof-of-concept ESA mission
aunched in December 2015
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masses that are kept drag-free
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LISAPathFinder: a proof of concept

e Results announced last February exceedec
requirements in the LISAPathFinder frequency band
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Interferometric Detection

e Laser interferometry Is the
only on-ground detection
technique that was
experimentally validated
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Space-Based Detection
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e Perfect orbits do
spacecraft not ec

Najar et al. 2005

not exist: distances between
ual nor constant in time |[Rajesh
. 1.e. spacecraft relative motion

e Point-ahead mechanism and moving telescopes and
optical benches to be sure to send beam correctly
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Laser Noise with Unequal Arms
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Laser Noise with Unequal Arms

e Laser frequency noise does not cancel to levels that
allow detection of gravitational waves

yi(t) = Hy(t) + w (t 2L1) +p (t 2L1)
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Time-Delay Interferometry

vi(t) = Hi(t) + p(t — T1) — p(t)
vo(t) = Ha(t) + p(t — T2) — p(t)




y(t) = [ya(t) + yi(t = To)] = a(t) + yo(t — T1)]




Time-Delay Interferometry
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LISA Time-Delay Interferometry
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LISA Time-Delay Interferometry

e For LISA we reconstruct 3 offline Michelson
iInterferometers, among which two independent

X1.5 =S e D3S£ —- D3D3/51 —+ D3D3/D2/S3
—S{ — D2153 P D2'D251 - D2’ D2D35£




LISA Time-Delay Interferometry

Optical Setup for a LISA Spacecraft
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Xy = (D3 FDy — DDy F)pr + (D3 Dy Dy Dy F — Doy Dy D3 F Dy )y
+ (DyDoF — Do FD)py + (D3D3 Dy FDy — DDy Dy Dy F )
+ (FD3 — D3 F)py + (Do Dy D3 F — Do Dy FD3)ply
+ (Do F — FDa)ps + (D3Dy F Dy — DDy Doyr F)pg
+ (D Dy D3 Dy F — D3 D3 Doy Do F)py
+ (Do DDy Dy Dy Dy F — Doy DDy Dy Dy FDu )
+ (D3Dy Dy Dy Dy Dy D3 FDy — Do Dy D3 Dy Dy Dy Do Dy F)py
+ (D3D3'Dy Dy Doy FDy — D3 DDy Dy Doy Do F)
+ (Dy Dy Dy Dy Dy Dy Dy Do F — Dy Dy Dy Dy Dy Dy Dy FDy ),
+ (Do Dy D3D3y D3 F — DaDoD3Dy FD3)p,
+ (D3D3 Dy Dy Dy Dy F D3 — DDy Dy Dy Do Dy D3 F)p,
+ (DyDyDyDyF Dy — DyDyDyDyDy F — DyDyDyDyF D\
+ (Do Do D3 D3y D3 Dy Dor F — D _ 9D D3 D3’ D3Da FDor )3
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Simulation with [y Node

e Model latest optical design, with various high-level
instrumental noises (laser frequency noise, readout
noise, optical path length noise, test-mass
acceleration noise)

C Propagatlon of beams between spacecraft using

a. -..‘ q" ..- .. .' .'1"' . ﬂ-- '-d" ...

LR Be.




Simulation with [y Node

nstrumental
noise, optica
acceleration

noises (
path le

noise)

ngth

e Model latest optical design, with various high-level
| aser frequency noise, readout

nolise, test-mass

e Propagation of beams between spacecraft using

Lagrange interpolating polynomials, linearly-varying



Simulation with [y Node

nstrumental
noise, optica
acceleration

noises (
path le

noise)

ngth

e Model latest optical design, with various high-level
| aser frequency noise, readout

nolise, test-mass

e Propagation of beams between spacecraft using

Lagrange interpolating polynomials, linearly-varying



Modeling of Residuals




Modeling of Residuals

e Derived analytic model for the laser noise residual
power spectrum after TDI, taking into account
varying armlengths and antialiasing filters




Modeling of Residuals

e Derived analytic model for the laser noise residual
power spectrum after TDI, taking into account
varying armlengths and antialiasing filters

e Orbits modulated with characteristic frequency of
10-7 Hz, so develop at first order for “linear delays”

e




Modeling of Residuals

e Derived analytic model for the laser noise residual
power spectrum after TDI, taking into account
varying armlengths and antialiasing filters

e Orbits modulated with characteristic frequency of
10-7 Hz, so develop at first order for “linear delays”







Modeling of Residuals

—e— Numerical #6
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Modeling of Residuals
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Modeling of Residuals

= Simu for Keplzriar orbits
- Theory for Keplerian
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Modeling of Residuals

N S'mu for Kepleriar orbits
10 1l ea- Theory for Keplerian
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Impact on Science

Calactic Background
' MBHBs at z =3
¥ Verification Binaries
EMRI Harmonics
LIGO-type BHEBs
- GWI150914

Gal. Bin. (SNR > T7)
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Impact on Science
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