

Ground-based gravitational wave detection with

atom Interferometers: status and perspectives

Remi Geiger, SYRTE, Observatoire de Paris

MIGA collaboration

Annual workshop of PhyFOG

Institut d'Astrophysique de Paris, France – May 21st 2019

- Gravitational Wave (GW) astronomy: why using atom interferometry ?
- Principle of atom interferometry
- Low frequency GW detection with atom interferometers
- The MIGA instrument.

GW astronomy

McLaughlin, GRG 46, 1810 (2014)

Detection of GW with laser interferometers

- Quadrupole nature of GW \rightarrow use a Michelson interferometer
- GW effect : one arm of the interferometer is 'increased in length' while the other arm is 'decreased' (this interpretation is coordinate dependent)
- The induced phase variation results in a change of the light intensity observed at the interferometer output.

Strain sensitivity curve (VIRGO)

Credit: Nicolas Leroy (LAL, Orsay)

GW astronomy below 10 Hz

Motivation: at frequencies <10 Hz, optical GW detectors are limited by motion noise

- Residual seismic noise
- Suspension thermal noise
- Coating thermal noise

More on the noise sources : see, e.g.,

• Etc.

The VIRGO sensitivity curve - VIR-NOT-PER-

1390-51 (2004)

Why not using « perfectly » free falling test masses to measure the laser phase?

\rightarrow Atom interferometry

Principle of Atom Interferometry

Principle of Atom Interferometry

- Analogy with a Mach-Zehnder optical interferometer
- Use laser pulses to coherently split and recombine an atomic wave

Two-wave interference signal : $P = P_0 + A \cos(\Delta \Phi)$

Two photon transitions

aser phase difference imprinted on the atoms $arphi=\phi_1-\phi_2=ec{ extsf{k}}_{ extsf{eff}}\cdotec{ extsf{r}}(t)$

$$\frac{1}{|\varphi|} |e, p + \hbar \vec{k}_{eff} \rangle - \varphi |$$

Top path : $\varphi(0) - \varphi(T)$ Bottom path : $\varphi(T) - \varphi(2T)$ $\longrightarrow \Delta \Phi = \varphi(0) - 2\varphi(T) + \varphi(2T) = \frac{4\pi g T^2}{\lambda}$

Sampling of the atomic trajectory with a laser ruler at 3 different times.

Typical experimental sequence

Typical values :

- 10^6 atoms, temperature of 1 μ K (rms velocities ~ $cm.s^{-1}$)
- 2T = few 100 ms
- Cycle time ~ 1 s.

Gravitational Wave detection with an array of atom interferometers

W. Chaibi et al, Phys. Rev. D 93, 021101(R) (2016)

Effect of the GW on the AI

The AI records the relative phase between the 2 counter-propagating lasers: $\Delta \phi(t) = \varphi^+(t) - \varphi^-(t)$

The GW affects this relative phase (it changes the light travel time t_r):

$$\varphi^{-}(t) = \varphi^{+}(t - t_r) \rightarrow \Delta \phi(t) = \frac{d\varphi}{dt}(t) \times t_r \text{ with } t_r = \frac{h(t)}{2} \times \frac{2(L-X)}{c}$$

Effect of the GW on the AI

$$(k = \frac{2\pi}{\lambda})$$

$$\Delta \Phi = \varphi(0) - 2\varphi(T) + \varphi(2T) \sim kh(L - X) \sin^2 \frac{\omega T}{2}$$

Transfer function of the AI

Al gradiometer

- Measurement of the differential phase between 2 physically separated Als
- Gradiometer signal = $\phi(X) \phi(X + L)$

• Position noise of the retro-reflecting mirror is common \rightarrow rejection of Δx_2 .

Gravity gradient noise

• Gradiometer signal = $\phi(X) - \phi(X + L) \sim k \left[L\ddot{h}(t) + a_x(L + X) - a_x(L) \right]$

GW Gravity gradient

The GW signal cannot be separated from a fluctuating gravity gradient.

- \rightarrow « Newtonian Noise » (fundamental limit) ; well known in optical GW detectors
- \rightarrow Limit for observations on ground below few Hz.

Main sources of NN at frequencies < 10 Hz

• Mass fluctuations in one region of space :

Saulson, PRD (1983)

FIG. 1. Interferometer configuration.

Seismic NN (Density fluctuations due to ground motion)	Infrasound NN (Density fluctuations in the near atmosphere)
Ground motion	Air density fluctuations caused by turbulence
Velocity of P-waves Correlation length ~ few km (at 1 Hz)	Sound velocity 200 m (at 1 Hz)

Detailed review : J. Harms, Living Rev. Relativity, 18, (2015), 3

Beating the Newtonian Noise

General idea : repeat the gradiometer experiment to average the Newtonian Noise.

NN characteristic length (few km at most) << GW wavelength

 \rightarrow average the NN to zero.

$$H_N(t) = \frac{1}{N} \sum_{i=1}^N \psi_i(t),$$

Filling the blind zone

Many sources are predicted in the 0.3-3 Hz frequency band (see Harms et al, PRD 88, 122003 (2013)).

The MIGA project :

Matter wave laser Interferometric Gravitation Antenna

References

- *R. Geiger et al, arXiv:1505.07137 (2015)*
- B. Canuel et al, Scientific Reports 8, 14064 (2018)

The MIGA project

- 10 years (2013 2023), 9 M€, 13 research institutes, 2 companies
- Goal : precision gravity measurements with Atom Interferometry (AI)
- 2 applications:
- 1. Monitoring of underground mass distributions
 - \rightarrow Applications: geophysics, hydrology
- 2. Test setup for applications of AI to gravitational wave (GW) detection

Overview of the MIGA project

Implementation site

- Low noise underground laboratoy
- Site of (hydro)-geological interest

Orders of magnitude

Target strain sensitivity: $10^{-13} / \sqrt{Hz}$ (MIGA advanced: $10^{-15} / \sqrt{Hz}$)

MIGA : status and perspectives

- Atom interferometry units under realization
- Digging of the MIGA galleries at LSBB ongoing \rightarrow December 2019
- MIGA installation at LSBB in 2020
- MIGA commissioning and data runs: 2021-2023.

What can we learn with MIGA?

PHYSICAL REVIEW D **99**, 104026 (2019)

Characterizing Earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors

J. Junca,¹ A. Bertoldi,¹ D. O. Sabulsky,¹ G. Lefèvre,¹ X. Zou,¹ J.-B. Decitre,² R. Geiger,³ A. Landragin,³ S. Gaffet,² P. Bouyer,¹ and B. Canuel¹

Ideas:

- the gravity gradient noise (GGN) increases at low frequencies
- Atom interferometers feature good long term stability
- \rightarrow The GGN has more and more influence upon integration
- \rightarrow Can it be used to get knowledge about the GGN ?

Testing GGN models with MIGA

MIGA strain sensitivity to infrasound GGN

Testing GGN models with MIGA

→ fluctuations of the atomic phase induced by atmospheric/seismic GGN will be observable by averaging measurements → test of GGN models.

Conclusions

- Atom interferometry : measure an optical phase using free falling atoms
- **GW detection with AI**: use free falling atoms instead of suspended mirrors
- \rightarrow potential gain at low frequency (< 10 Hz)
- Possibility to reduce the effect of **Newtonian Noise**
- Challenges for cold atom physics to reach $\sim 10^{-20}/\sqrt{Hz}$ strain sensitivity

Contribution to GW astronomy in the $\sim 0.3 - 3$ Hz band

- **MIGA** : proof of concept + test of Gravity Gradient Noise models.
- Ongoing effort for a design study at the **European level** (ELGAR project).

Thank you for your attention!

Q. Beaufils

AN

T

P. Bouyer

A. Landragin

Cold atom source (SYRTE)

Title

Title

