Pulsar Timing Arrays & GR tests

Journée PhyFOG - 21 mai 2019

Gilles Theureau (LUTh/USN/LPC2E) & A.Petiteau (APC)

S.Babak (APC), I.Cognard (LPC2E/USN), L.Guillemot (LPC2E/USN) *Post-doc* – S.Chen (LPC2E/USN), G.Voisin (LUTh, Univ. Manchester) *PhD* – A.Berthereau (LPC2E/USN), A.Chalumeau (APC/USN/LPC2E), Mikel Falxa (APC)

PTAs : principle and state-of-the-art

Time of arrival residuals for pulsar PSR J1909-3744

PTAs : questions

 $\log_{10} A_{\rm GWB}$

PTAs : planning

128 MHz

NRT instrumentation: Enlarge the band width (1.5-3.5 GHz).

IPTA : share observations and methods (> 2016)

2008

2011

Participation in MeerKAT (2019-2023) perpective of SKA1 (>2028)

PTAs : the gravitational wave background : nHz-µHz domain

- Super massive black hole binaries (SMBHB)
- Cosmic string loops
- Relics of inflation

The life cycle of supermassive binary black holes

with the PTA technique in a reasonable time ?

How can we characterize the detected signal ?

monochromatic PTA regime Burke-Spolaor 2018

Populations synthesis ingredients

Merger trees from cosmological N-body simulations

Bulge to BH mass ratio from galaxies dynamical studies

Add dynamical friction with stars and gas to migrate the BHs towards the center

Three body interaction with stars from the loss cone region (when binary orbital velocity > stars)

Find mechanisms to solve the last parsec problem

- massive BH triplets (Bonetti et al 2018),
- triaxial potential/density of the nuclei refilling the loss-cone (Vasiliev et al 2015),
- circumbinary accretion disk (Tang et al 2017)
- accretion of clumpy cold gas (Goicovic et al 2018),
- a large population of stalled binaries at low frequencies (Dvorkin&Barausse 2017)

Population of SMBBH: contribution from background & individual sources

BH – host galaxy mass relation time to coalescence

Tests of Astrophysical models

~2015 limit

Chen et al 2018 EPTA – population synthesis

parameter	description	standard	extended
Φ_0	GSMF norm	-2.8 ± 0.3	-2.8 ± 0.3
Φι	GSMF norm redshift evolution Galaxy	-0.25±0.22 stellar mas	-0.25±0.22 s function
$\log_{10}M_0$	GSMF scaling mass	11.25 ± 0.2	11.25 ± 0.2
α0	GSMF mass slope	-1.25 ± 0.17	-1.25 ± 0.17
α _l	GSMF mass slope red- shift evolution	0 ± 0.15	0 ± 0.15
fo	pair fraction norm	[0.02,0.03]	[0.01,0.05]
α_f	pair fraction mass	[-0.2,0.2]	[-0.5,0.5]
	slope Pair fraction		
β_f	pair fraction redshift slope	[0.6,1]	[0,2]
γ _f	pair fraction mass ratio slope	[-0.2,0.2]	[-0.2,0.2]
τ0	merger time norm	[0.1,2]	[0.1,10]
α_{r}	merger time mass	[-0.2,0.2]	[-0.5,0.5]
	^{slope} Merger timescale		
βτ	merger time redshift slope	[-2,1]	[-3,1]
γτ	merger time mass ratio slope	[-0.2,0.2]	[-0.2,0.2]
$\log_{10}M_{\star}$	$M_{\rm bulge} - M_{\rm BH}$ relation norm	8.17 ± 0.33	8.17 ± 0.33
α,	$M_{\text{bulge}} - M_{\text{BH}}$ relation slope M_{bulge}	1±0.1 - M _{ما} relatio	1±0.1 DN
ε	$M_{\text{bulge}} - M_{\text{BH}}$ relation scatter	[0.3,0.5]	[0.2,0.5]
eo	binary-eccentricity :: [0,01,0,99] [0,01,0,99]		
$\log_{10}\zeta_0$	stellar density factor	[-2,2]	[-2,2]

Tests of Astrophysical models

1.00

0.75

0.50

0.25

~2025 limit ?

Chen et al 2O18 EPTA – population synthesis

parameter	description	standard	extended	
Φ_0	GSMF norm	-2.8 ± 0.3	-2.8 ± 0.3	
Φ_I	GSMF norm redshift evolution Galaxy	-0.25 ± 0.22 stellar ma	-0.25 ± 0.22 ass function	
$\log_{10}M_0$	GSMF scaling mass	11.25 ± 0.2	11.25 ± 0.2	
α	GSMF mass slope	-1.25 ± 0.17	-1.25 ± 0.17	
αι	GSMF mass slope red- shift evolution	0 ± 0.15	0 ± 0.15	
f ₀	pair fraction norm	[0.02,0.03]	[0.01,0.05]	
α_f	pair fraction mass	[-0.2,0.2]	[-0.5,0.5]	
	slope Pair fraction			
β_f	pair fraction redshift slope	[0.6,1]	[0,2]	
Υŗ	pair fraction mass ratio slope	[-0.2,0.2]	[-0.2,0.2]	
τ0	merger time norm	[0.1,2]	[0.1,10]	
α_r	merger time mass	[-0.2,0.2]	[-0.5,0.5]	
	^{slope} Merger timescale			
βτ	merger time redshift slope	[-2,1]	[-3,1]	
γτ	merger time mass ratio slope	[-0.2,0.2]	[-0.2,0.2]	
$\log_{10}M_{\star}$	$M_{\rm bulge} - M_{\rm BH}$ relation norm	8.17 ± 0.33	8.17 ± 0.33	
α.	$M_{\text{bulge}} - M_{\text{BH}}$ relation slope M_{bulge} -	1±0.1 M _{BU} relatio	1±0.1 ON	
ε	$M_{bulge} - M_{BH}$ relation scatter	[0.3,0.5]	[0.2,0.5]	
en	binary eccentricity			
	Eccentricity and stellar density			
$\log_{10}\zeta_0$	stellar density factor	-2,2	-2,2	

GR tests, constraints on Equation of State (EoS)

Recent results :

PSRJ1713+0747 (Zhu et al 2018) « Tests of gravitational symmetries with pulsar binary J1713+0747 »

PSR J1745–2900 (Desvignes et al 2018) « Large Magneto-ionic Variations toward the Galactic Center Magnetar, PSR J1745-2900 »

On-going projects

Binary/multiple systems Double pulsar (Kramer et al) Tripple system PSRJ0337+1715 and SEP (Voisin, Freire et al) PSRJ0751+1807 (Nice et al) – masses, EoS PSRJ1012+5307(Liu, Madhuri et al) – GR tests PSRJ1518+4904 (Janssen et al) – masses PSRJ1600-3053 (McKee, Desvignes et al) – x_dot, masses PSRJ1756-2251 (Ferdman et al) – gamma, omega_dot, Pb_dot, ecc PSRJ2045+3633 (32 ms/32d, omega_dot, masses) & PSRJ2053+4650 (Freire, McKee et al)

LIGO/Virgo (Abbott et al)

Search for signals at twice the rotational frequency of 200 known pulsars (provide .par)

Analysis of J1745-2900

Use the polarized emission of PSR J1745–2900 to study **the intensity of the magnetic field in Galactic Center**, close to Sagittarius A* (0.1 pc)

Analysis of PSRJ1713+0747

3 tests of **equivalence principle in strong field regime (SEP)** by observing of rate of fluctuation of orbital period and eccentricity of the system:

- stability of gravitation constant G,
- test of universality of free-fall: limit on the parameter UFF $|\Delta|$
- constrain of post-newtonian parameter α_3 (gravitational Lorentz invariance)

<u>THE</u> triple system J0337+1715

→ Very accurate timing data from Nançay

How to test the strong equivalence principle ?

- Similar to the Laser-Moon experiment:
- \rightarrow Earth and Moon fall in the potential of the Sun
- J0337+1715 system :
- $\rightarrow\,$ Pulsar and Inner WD fall in the potential of the outer WD
- Difference with Laser- Moon :
- \rightarrow Neutron star (NS) strongly gravitating ! Regime unreachable in the Solar system.
- At Newtonian order, SEP violation means: Gravitational constants G_{NS-WD}≠ G_{WD-WD}

 \rightarrow <u>We fit for Δ </u>: G_{NS-WD} = (1 + Δ) G_{WD-WD}

Preliminary results

Covariance plot, 26-parameter MCMC.

Conclusion

- PTAFrance team (APC, LPC2E, LUTh, Nancay Station) embedded in European PTA and International PTA + starting collaboration with MeerKAT:
 - Observations of more than 50 pulsars (between few and 20 years)
 - Search for:
 - Background:
 - Continuous sources: individual SMBHb
 - No detection => constrain on astrophysical models
- More use of the pulsars timing:
 - Test of GR: tests of strong equivalence principle
 - J1713+0747
 - J0037+1715: triple system
 - J1906+0746

• ..

- Measures of magnetic field: J1745-2900
- Continuous progresses both on observations and sciences